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ABSTRACT: Potential distribution ranges of natural grassland in subtropical humid mountainous areas were predicted by species 
distribution models (SDMs) to examine the effects of true and pseudo-absence data on model performances that were scarcely 
assessed by using real data. Climate spaces of potential ranges of natural grassland were then constructed by principal components 
analysis (PCA). The distribution map projected by six model algorithms based on true absence data had all presented restricted 
distribution ranges of natural grassland along mountain ridges, whereas that based on pseudo-absence data presented wider 
distribution ranges. RF model was used to detect the effects of data record number and contribution of climate variables on model 
performance because of higher True Skill Statistics. Restricted distribution ranges of natural grassland projected by RF based on 
true absence data were similar to limited climate space quantified by PCA. However, climate variables related to occurrences of 
natural grassland were not consistent between RF and PCA results. Occurrences of natural grassland associated with treeline at low 
elevation were presumably determined by multiple climate factors at subtropical mountain ridges, such as relatively lower 
temperatures, heavy precipitations, and strong winds. Local climate dataset derived from meteorological stations and followed by 
altitudinal adjustment was available for modeling species distribution range in mountainous areas. Conclusively, true absence data 
had practically delineated geographical boundaries and characterized the climate environments of natural grassland. True absence 
data was recommended to collect along a known environmental gradient and used to construct training dataset with pseudo-absence 
data to improve model performance. 
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INTRODUCTION 
 
Species distribution models (SDMs) were widely 

used to predict species distribution range and evaluate 
potential impacts of climate change on shifting species 
range (Mohapatra et al., 2019; Xu et al., 2021; Zhu et al., 
2018). SDMs provide useful information on 
understanding how environmental factors control the 
distribution of species, which is essential for prioritizing 
places for biodiversity conservation (Brunialti and Frati, 
2021; Dubuis et al., 2011; Gies et al., 2015). Ecologists 
and conservationists had increasingly relied on model 
predictions as a means for estimating species distribution 
patterns and informing conservation and planning 
management strategies for rare or endangered species 
(Guillera‐Arroita et al., 2015; Kier et al., 2009; Peng et 
al., 2019; Porfirio et al., 2014; Tomlinson et al., 2020; 
Tsoar et al., 2007; Xu et al., 2021). Since the last century, 
rare or endangered species have been threatened by 
continuous expansion of human colonization areas that 
had seriously caused forest fragmentation and suitable 
habitat isolation (Anderson-Teixeira et al., 2015; Arroyo-
Rodriguez et al., 2015). Urban expansion has also 
resulted in complex landscapes with mixed natural and 
artificial ecosystems, and delineation of conservation 
areas is a great challenge in such landscapes. Therefore, 
an accurate map presenting empirical species distribution 
range is particularly essential for conservation 

management in landscapes with mixed natural and 
artificial ecosystems.  

SDMs correlate presence-only or presence-absence 
data of species to relevant environmental variables and 
project the potential distribution range of species (Elith 
and Leathwick, 2009; Peterson et al., 2011). Previous 
studies had recommended several global climate datasets 
that had improved performance of SDMs at continental 
scales (Booth et al., 2014; Fick and Hijmans, 2017; Title 
and Bemmels, 2018), while others had proposed several 
high-resolution environmental datasets to powerfully 
improve the performance of SDMs at landscape scale 
(Lannuzel et al., 2021; Liao et al., 2021; Pradervand et 
al., 2014; Tomlinson et al., 2020). Local climate dataset, 
interpolated from meteorological data followed by 
altitudinal adjustment, was a high-quality climate dataset 
that had accurately captured climate heterogeneity along 
a topography and had successfully predicted the potential 
distribution range of species at landscape scale (Liao and 
Chen, 2021). In this study, interpolated and altitudinal 
adjusted climate dataset from local meteorological data 
was applied to predict species distribution pattern in 
mountainous areas at landscape scale.  

In addition to climate datasets, presence and absence 
data of species are also critical factors influencing the 
prediction accuracy of SDMs (Senay et al., 2013). 
Presence data is species georeferenced occurrences 
directly collected in the field or resulted from efforts to 
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digitize and reference to geographical coordinates of 
specimens held in museums and herbaria. Bias collection 
of presence data is one of the major types of spatial error 
(Anacker et al., 2013). Particularly, mountainous areas 
support patchy habitats and steep climatic gradients along 
slopes (Dobrowski, 2011; Lannuzel et al., 2021) had 
caused fragmented and disjunct distributions of plant 
individuals in mountainous evergreen broadleaved forests 
that had usually resulted in bias collections of presence 
data. On the other hand, there are two types of absence 
data that have effects on performance of SDMs (Dupin et 
al., 2011). Models built with true absence data had the 
best predictive power (Wisz and Guisan, 2009) when 
ecologists had ensured unbiased sampling of true absence 
data across landscapes (Peterson et al., 2011). Meanwhile, 
true absence data is usually not available and may be very 
difficult to be detected in the field (Hegel et al., 2010; 
Peterson et al., 2011; Qiao et al., 2019). Thus, true 
absence data was mostly substituted by pseudo-absence 
data in model predictions and the most effective method 
to generate pseudo-absence data is random selection of 
points from background area (Barbet-Massin et al., 2012; 
Chapman et al., 2019; Liang et al., 2018; Senay et al., 
2013). Pseudo-absence data, in comparison with true 
absence data, is easy to be constructed in model 
predictions. Pseudo-absence data was geographically and 
environmentally more distant from presence data that was 
appropriate to play as a substitute of true absence data 
when true absence data was not available in model 
prediction. To our knowledge, true absence data was 
scarcely examined by using real data in model predictions, 
particularly in mountainous areas, because unbiased and 
comprehensive collection of true absence data for SDMs 
is a difficult task (Senay et al., 2013). In this study, model 
algorithms were calibrated by presence and true/pseudo-
absence data to examine the effects of these data on model 
performances in mountainous area.  
In order to examine the effects of true and pseudo-
absence data on model performance at landscape scale, 
natural grassland at subtropical humid mountainous areas 
was predicted by SDMs. Natural grassland is a prominent 
and persistent vegetation type distinguished from 
neighboring evergreen broadleaved forests at subtropical 
humid mountainous areas with elevations lower than 
1000 m above sea level (asl.) (Li et al., 2013). True 
absence data of natural grassland is easily identifiable in 
field survey, making it possible to examine the effects of 
true and pseudo-absence data on model performances. 
Six model algorithms used to project distribution range 
was applied by the presence and true/pseudo-absence 
datasets of natural grassland in this study. Model 
performances were evaluated by True Skill Statistics 
(TSS) and receiver operating characteristic (ROC) curve. 
Subsequently, random forest algorithm (RF) was 
performed to predict potential distribution range of 
natural grassland and to correlate climate variables and 

the occurrences of natural grassland. Accuracy of RF 
prediction power was commonly detected by the area 
under the receiver operating characteristic curve (AUC) 
in previous studies (Chapman et al., 2019; Lannuzel et al., 
2021; Lobo et al., 2008; Tomlinson et al., 2020; Xu et al., 
2021; Zhu et al., 2018) and is used in this study to indicate 
the accuracy of RF model performance.  

Furthermore, principal components analysis (PCA) 
was performed to correlate occurrences of natural 
grassland and climate factors in subtropical humid 
mountainous areas. The occurrences of natural grassland 
in this area are consistent with the presence of treeline. 
Treeline is a prominent edge of forest ecosystems that 
commonly appeared in the alpine zone and was 
characterized by harsh environments, such as cold soil 
temperature (Korner, 1998; Liu et al., 2011; Smith et al., 
2009). Limitation of treeline and climate characteristics 
of natural grassland at low elevation was presumably 
related to particular climate environments but was seldom 
studied in subtropical humid mountainous areas.  

This study aims to examine the effects of true and 
pseudo-absence data on the model performance. Model 
algorithms based on the true absence data was 
hypothesized to have projected restricted distribution 
range of natural grassland at mountain ridge, since true 
absence data was geographically close to the presence 
data. Model algorithms based on pseudo-absence data 
was assumed to project a wider ranges of natural 
grassland along mountain ridges, since pseudo-absence 
data was random points selected throughout the gridded 
cells in the study area and was geographically more 
distant from the presence data. Occurrences of natural 
grassland at low elevation in subtropical mountainous 
areas were also correlated to climate factors in this study.  
 

MATERIALS AND METHODS 
 

Study area 
The study area is in northern Taiwan (24°57′–25°17′N, 

121°24′–122°00′E). In this study, northern Taiwan 
(NTWN) was divided into five watersheds. The 
Yangmingshan area (YMSA) was divided into four 
watersheds, they are northeast (NE), northwest (NW), 
southwest (SW) and southeast (SE) slopes of YMSA and 
Pingxi area (PX) is the fifth watershed (Fig. 1). The highest 
peak of the YMSA is 1,120 m above sea level (asl.) and 
that of Pingxi area is 757 m asl. The area of study site is 
about 1,031 square kilometers (103,100 hectares). NTWN 
is characterized by the subtropical monsoon climate (Chen 
and Tsai, 1983). The mean monthly temperatures range 
from 8.6 ℃ in January to 25.5 ℃ in August and the annual 
total precipitation is more than 3,500 mm. Northeast wind 
in winter and typhoon in summer constantly transport 
moisture to the study area which leads to a relatively stable 
humid conditions and high frequency of cloud cover. There 
is no significant dry season in the study area. 
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Fig. 1. Maps show geographical location of Taiwan and neighboring countries (upper right map) and georeferenced location of 
presence (yellow solid circles in the central map) and absence data (red solid circles) of natural grassland in northern Taiwan. Northern 
Taiwan was divided into five watersheds for calculating empirical lapse rates of climate data. The Yamingshan area (YMSA) was 
divided into four watersheds, they are northeast (NE), northwest (NW), southwest (SW) and southeast (SE) slopes of YMSA and Pingxi 
area (PX) is the fifth watershed. The locations of 30 meteorological stations adopted in this study were represented by solid star within 
a circle. Mountain tops were represented by white triangles. 
 

Evergreen broad-leaved forest is the major vegetation 
type in NTWN (Hsieh et al., 1997; Li et al., 2013; Liao et 
al., 2012). The forests are dominated by species of 
Castanopsis, Cleyera, Cyclobalanopsis, Dendropanax, 
Elaeocarpus, Engelhardia, Gordonia, Helicia, Ilex, 
Keteleeria, Limlia, Litsea, Machilus, Meliosma, Michelia, 
Pinus, Schefflera, Symplocos, and Trochodendron with a 
mean canopy height of 10 m (Li et al., 2013). Natural 
grassland, with the Miscanthus sinensis and Pseudosasa 
usawai being the dominant species, free from 
anthropogenic disturbance was frequently observed at 
mountain ridge from coast to inland in the study area 
(Liao et al., 2012; Liao et al., 2014). Long-term 
persistence of natural grassland along mountain ridges at 
low elevation was indirectly indicated by ancient 
documentations and was empirically related to climate 
factors (Liao et al., 2014), while grasslands around 
farmland pronouncedly caused by anthropogenic 
disturbances were not target vegetation in this study.  

 
Vegetation data collection 

Presence and absence data of natural grassland were 
used to construct the data matrix for model evaluations. 
Presence and absence data for natural grassland were 
collected along the roads and mountain trails in NTWN. 
Practically, there is an abrupt transition from evergreen 
broadleaved forests to natural grassland along mountain 
slopes in NTWN. Thus, the presence data of grassland 

was defined as the vegetation without shrub or trees, 
while absence data of grassland as the closed-canopy 
forests. Duplicated records of the presence data were 
spatially verified to ensure only one occurrence within each 
gridded cell. A total of 252 presence and 372 absence data 
records were available for modeling the distribution of 
natural grassland (Fig. 1). As absence data was required for 
the model evaluations, two types of absence data were used 
in this study. Absence data collected in the field was re-
named as true absence, whereas pseudo-absence data (or 
background points) were random points selected 
throughout the gridded cells in the study area. Presence and 
true/pseudo-absence data were used to construct the 
training datasets for model predictions. 

 
Climate data 

NTWN was divided into gridded cells with spatial 
resolution of 50 × 50 m2 and a total of more than 0.4 
million gridded cells was generated for construction of 
the local climate dataset in this study. Spatial size of 50 × 
50 m2 is attempting to capture steep environmental 
features along mountain slopes and making climate 
environments over landscapes more prominent and 
distinguishable (Liao and Chen, 2021). For each gridded 
cell, longitude, latitude, and elevation were obtained from 
a digital terrain model (DTM) with a resolution of 20 by 
20 meters been developed by the Department of 
Geography, Chinese Culture University. Climate variables 
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of gridded cells were extracted from the climate surfaces of 
watersheds. The climate surfaces were derived from daily 
data of meteorological stations by means of a downscaling 
procedure performed by ArcInfo software (ESRI, 
Redlands, California, USA). Daily data of meteorological 
stations in NTWN from the year 2000 to 2020 were 
downloaded from the website of Central Weather Bureau 
(CWB, https://www.cwb.gov.tw/V7/forecast/). Mean 
monthly temperature and mean total precipitation were 
calculated from daily data for each meteorological station. 
Meteorological stations in NTWN were categorized into 
five groups based on the five watersheds of the study 
areas (Fig. 1). The mean monthly data of meteorological 
stations were imported to ArcInfo software and were used 
for interpolation by means of Inverse Distance Weighted 
(IDW) method to generate raster files representing 
climate surfaces of the watershed. Smooth elevation 
surface (Elev1) for each watershed was also generated by 
the IDW method implemented by ArcInfo software based 
on the elevation of meteorological stations within the 
watershed. Subsequently, the gridded cells were mapped 
in the ArcInfo software and overlapped with the raster 
files of climate surfaces to extract monthly climate data. 
This was the procedure to create preliminary gridded 
climate dataset (ClimData1).  

The preliminary gridded climate dataset (ClimData1) 
was then adjusted by empirical elevation lapse rates 
varied among five watersheds. Empirical lapse rates were 
calculated on the basis of the meteorological stations 
within the watersheds. The climate data from Datunshan 
and Anbu meteorological stations, near the mountain 
ridge of YMSA represented the climate environments of 
the mountain ridge, were used to calculate lapse rates of 
climate data in each of the four watersheds of YMSA. 
Linear regression model implemented by “stats” package 
within the R environment (Chambers and Hastie, 1992) 
was applied to calculate lapse rates (slope and intercept 
of linear function) for each watershed. For each 
watershed, mean monthly temperature, wind speed, and 
monthly total precipitation calculated from recorded data 
of meteorological stations were the dependent variables, 
and elevation of the stations was the independent 
variables of the linear function. Altitudinal adjusted 
climate data (ClimData2) were calculated based on the 
preliminary gridded climate dataset (ClimData1), smooth 
elevation surface (Elev1) interpolated from 
meteorological stations, and slopes of the regression line 
fitted elevation and monthly temperature, precipitation, 
and wind speed of meteorological stations. The 
preliminary gridded climate dataset (ClimData1) and 
smooth elevation surface data (Elev1) were then re-
projected to actual elevation data from the 20 m DTM 
(Elev2) to calculate ClimData2. The altitudinal adjusted 
climate data (ClimData2) were calculated by the function: 
ClimData2 – ClimData1 = slope × (Elev2 – Elev1). The 
altitudinal adjusted climate data (ClimData2) were used 

to construct climate dataset of model algorithms. The 
climate scenarios were created taking into account the 
following 13 variables: mean annual temperature (Tann), 
mean maximum temperature of the warmest month 
(Twrm), mean minimum temperature of the coldest 
month (Tcld), mean temperature in summer (Tsmr) and 
winter (Twnt), temperature differences between warmest 
and coldest months (Tdif), annual total precipitation 
(Pann), total precipitation in summer (Psmr) and winter 
(Pwnt), mean wind speed of the warmest month (WSwrm) 
and coldest month (WScld), and mean wind speed in 
summer (WSsmr) and winter (WSwnt).  

 
Modelling technique 

Six model algorithms were implemented through the 
“biomod2” package in R software (Thuiller et al., 2016) 
to predict the potential distribution range of natural 
grassland. These models include (1) two machine 
learning algorithms, random forest (RF) and artificial 
neural network (ANN); (2) two regression methods, 
general linear model (GLM) and generalized additive 
model (GAM); and (3) two classification methods, 
flexible discriminant analysis (FDA) and classification 
tree analysis (CTA). The dataset to be evaluated by model 
algorithms in this study is the gridded cells with 
altitudinal adjusted climate data (ClimData2). The 
training datasets were constructed by the presence and 
true/pseudo-absence data of natural grassland and climate 
data that was extracted from the closest cells of altitudinal 
adjusted gridded climate dataset according to the 
coordinates of presence and true/pseudo-absence data. To 
assess model accuracy, a random set of 80% of the 
presence and absence data was used to train the model, 
and the remaining 20% was used for evaluation. The 
training dataset was modeled 100 times with the resampled 
training dataset by model algorithms. Prediction results 
(Fig. S1) and model accuracy represented by True Skill 
Statistics (TSS) and receiver operating characteristic (ROC) 
curve of the six model algorithms (Fig. S2) were presented 
in the supplement. Among the six model algorithms, RF 
algorithm had the highest TSS value and was further 
utilized for evaluating impacts of the number of data 
records on model performance and for correlating climate 
variables and potential distribution range of natural 
grassland. RF algorithm is a machine learning method that 
handles numerous variables and is well suited to the 
complex data set (Breiman, 2001). RF is capable of 
detecting complex relationships among model variables 
without making a prior assumption about the type of 
relationship (Breiman, 2001).  

Presence and true/pseudo-absence data of natural 
grassland were randomly re-sampled 50, 100 and 200 
data records to create different sizes of training datasets 
and subsequently modeled 100 times by RF algorithm 
with the resampled training datasets to quantify 
uncertainties in predictions. These procedures allowed us 
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Table 1. Importance of predictor variables generated by Random Forest based on the true and pseudo-absence data. Predictor 
variables contributed most to the models based on the true and pseudo-absence data were different. 
 

 True absence data  Pseudo-absence data 
 50  100  200  50  100  200 
Tann 6.9 ± 1.1  7.3 ± 0.9  7.3 ± 0.7  14.5 ± 3.6  14.8 ± 2.5  13.2 ± 2.7 
Twrm 7.9 ± 1.4  8.3 ± 1.1  8.1 ± 0.9  16.9 ± 3.7  17.8 ± 3.7  18.7 ± 3.1 
Tcld 6.5 ± 1.4  7.4 ± 1.1  7.8 ± 0.8  9.0 ± 3.0  8.1 ± 2.2  6.6 ± 1.8 
Tsmr 7.4 ± 1.4  8.1 ± 1.2  7.9 ± 0.7  19.1 ± 4.4  19.4 ± 3.6  19.8 ± 2.8 
Twnt 6.8 ± 1.3  7.2 ± 0.9  7.1 ± 0.7  9.5 ± 2.8  9.2 ± 2.1  7.9 ± 1.8 
Tdif 8.4 ± 1.9  9.4 ± 1.4  10.8 ± 1.1  4.0 ± 1.5  5.0 ± 1.4  6.6 ± 1.4 
Pann 11.7 ± 2.9  8.1 ± 1.3  7.8 ± 0.9  3.0 ± 1.6  3.2 ± 1.3  2.6 ± 0.7 
Psmr 8.6 ± 2.0  8.0 ± 1.2  6.9 ± 0.8  4.0 ± 2.8  2.6 ± 0.9  2.1 ± 0.6 
Pwnt 9.3 ± 1.7  7.8 ± 1.2  7.7 ± 0.7  2.0 ± 1.1  2.5 ± 0.8  2.4 ± 0.5 
WSwrm 6.4 ± 1.2  7.2 ± 1.0  7.5 ± 0.7  3.6 ± 1.6  3.2 ± 1.0  3.6 ± 0.9 
WScld 7.0 ± 1.6  7.3 ± 1.2  7.0 ± 0.6  5.4 ± 2.4  6.3 ± 2.4  7.5 ± 2.1 
WSsmr 6.6 ± 1.1  7.3 ± 1.0  7.4 ± 0.6  3.7 ± 1.6  3.5 ± 1.3  3.7 ± 1.0 
WSwnt 6.2 ± 1.1  6.4 ± 0.8  6.6 ± 0.5  5.2 ± 2.4  5.2 ± 1.7  5.4 ± 1.5 

 

Note: The number presented in the column names are sample sizes of training datasets.  The value in each cell is mean ± standard 
deviation. Tann: mean annual temperature; Twrm: mean maximum temperature of the warmest month; Tcld: mean minimum 
temperature of coldest month; Tdif: temperature differences between warmest and coldest months; Tsmr: mean temperature in summer; 
Twnt: mean temperature in winter; Pann: annual total precipitation; Psmr: total precipitation in summer; Pwnt: total precipitation in 
winter; WSwrm: mean wind speed of the warmest month; WScld: mean wind speed of the coldest month; WSsmr: mean wind speed 
in summer; WSwnt: mean wind speed in winter. 
 
to generate a range of training datasets with contrasting 
sizes corresponding to the bias field collections of 
georeferenced data in mountainous areas. The RF was 
implemented by the “randomForest” library within the R 
software (Breiman, 2001; Liaw and Wiener, 2002). The 
area under the receiver operating characteristic curve 
(AUC) was used to assess the RF model performance 
(Fois et al., 2015; Lannuzel et al., 2021; Qiao et al., 2019; 
Xu et al., 2021).  
 
Quantification of climate spaces by principal 

components analysis (PCA) 
Principal components analysis (PCA) implemented 

by “prcomp” package in R software was performed to 
correlate climate variables and occurrences of natural 
grassland. The climate space of the natural grassland was 
quantified by climate variations along significant axes, 
defining ecological preferences and climate environments. 
Six datasets were used for PCA quantification of climate 
spaces, and they were the background points, potential 
ranges of natural grassland projected by RF based on true 
and pseudo-absence data, presence and true absence data 
of natural grassland, and meteorological stations. PCA 
was applied to scaled data for 13 climate variables 
corresponding to the formation of climate spaces of 
natural grassland. Among the 13 climate variables 
implemented to PCA, Pann, Psmr, and Pwnt were 
rescaled from mm to dm. The 13 climate variables were 
thought to provide climate preferences for the 
distributions of natural grassland and the ecological 
demands were distilled into three principal components, 
the first, second, and third axes from a PCA. Analysis of 
variance (ANOVA) and a Tukey’s HSD post-hoc test 

were performed to identify differences of climate data 
among meteorological stations to evaluate ecological 
preference and climate environments of natural grassland. 

 
RESULTS 

 
Distribution map projected by the six model 

algorithms based on true absence data presented a 
restricted distribution range of natural grassland along 
mountain ridges in the study area (Fig. S1), whereas that 
based on pseudo-absence data presented a wider 
distribution range (Fig. S1). The effect of true absence 
data played a role in restricting the potential distribution 
range of natural grassland when modeling by SDMs. TSS 
and ROC scores based on the presence and true/pseudo-
absence data showed no conspicuous trend among the six 
model algorithms (Fig. S2). 

Among the six models, RF algorithm had the highest 
TSS values based on the presence and pseudo-absence 
data and was further used to evaluate the effect of data 
record numbers on the model performance and to 
correlate climate factors and the presence of natural 
grassland. Interestingly, the number of presence/absence 
data records has negligible effect on the RF model 
performances. Projection map of RF evaluated by 50 data 
records (Fig. 2A and 2B) of training dataset had a similar 
potential range contrasted to the maps evaluated by 100 
(Fig. 2B and 2E) or 200 data records (Fig. 2C and 2F). 
Conclusively, true and pseudo-absence data had evident 
effects on evaluating species distribution range, while 
different numbers of presence/absence data records had 
weak effects on projecting species distribution range, 
regardless of true or pseudo-absence data (Fig. 2).  
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Fig. 2. Contemporary potential distribution range of natural grassland in northern Taiwan (white mask with dark outline in the maps) 
projected by Random Forest. Randomized re-samples of presence and true absence data (A, B, and C) had precisely projected 
distribution range of grassland at mountain ridge, while that of presence and pseudo-absence data (D, E, and F) had projected wider 
range of grassland along mountain ridge. The sample sizes of training datasets were 50 presence and absence data records (A and 
D), 100 records (B and E), and 200 records (C and F). The locations of 30 meteorological stations adopted in this study were 
represented by solid star within a circle. 
 

Pann and Tdif contributed most to the RF model 
predictions based on the presence and true absence data, 
whereas Tsmr, Twrm, and Tann were the most important 
predictors that strongly influenced model performance 
based on the presence and pseudo-absence data (Table 1). 
Important predictors that contributed to the model 
predictions were not consistent between the two types of 
absence data. The AUC scores based on the presence and 
true absence data were lower than those based on the 
presence and pseudo-absence data (Fig. 3). Typically, 
higher AUC scores indicated better performance of 
SDMs. Accordingly, higher AUC score of RF predictions 

based on presence and pseudo-absence data was supposed 
to indicate better model performance. However, the 
potential range projected by RF based on pseudo-absence 
data was wider than the geographical range of true 
absence data and was certainly wider than the realistic 
range of natural grassland. Wider potential range leads to 
an inaccurate model performance since true absence data 
were locations of evergreen broadleaved forests and was 
geographically close to the boundaries of natural 
grassland. True absence data delineate the natural 
contemporary species distribution range guaranteed more 
accurate model prediction result.  
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Table 2. The first three axes of the principal components analysis 
(PCA) on the correlation matrix of climate variables from the local 
climate dataset. Pann and WSwnt had significantly correlated 
with the axes I and II of PCA, respectively. 
 

 PC1 PC2 PC3 

Tann -0.1155 -0.2389 0.2733 
Twrm -0.1067 -0.3290 0.2157 
Tcld -0.1319 -0.2335 0.4586 
Tsmr -0.1191 -0.2375 0.2560 
Twnt -0.1122 -0.2432 0.2953 
Tdif -0.0212 -0.0189 0.0078 
Pann 0.8562 -0.2245 -0.0772 
Psmr 0.0615 -0.0219 -0.1609 
Pwnt 0.4091 -0.1841 0.4021 
WSwrm 0.0280 0.1772 0.1051 
WScld 0.0302 0.2146 0.1867 
WSsmr 0.1334 0.4935 0.4019 
WSwnt 0.0830 0.5084 0.3388 

 

Tann: mean annual temperature; Twrm: mean maximum 
temperature of the warmest month; Tcld: mean minimum 
temperature of coldest month; Tdif: temperature differences 
between warmest and coldest months; Tsmr: mean temperature 
in summer; Twnt: mean temperature in winter; Pann: annual total 
precipitation; Psmr: total precipitation in summer; Pwnt: total 
precipitation in winter; WSwrm: mean wind speed of the warmest 
month; WScld: mean wind speed of the coldest month; WSsmr: 
mean wind speed in summer; WSwnt: mean wind speed in winter. 
 

 
 

Fig. 3. AUC (area under the receiver operating characteristic 
curve) scores of RF model based on true (left three boxes) and 
pseudo-absence data (right three boxes).  The number at x-axis 
are sample sizes of training dataset that were randomly re-
sampled from presence/true-absence and presence/pseudo-
absence datasets. 
 
Climate spaces quantified by PCA 

PCA had quantified climate spaces of presence data, 
true-absence data, the potential range of natural grassland 
based on the presence and true/pseudo-absence data, 
background points and meteorological stations (Fig. 4). 
Principal component 1 (PC1) accounted for 81.32% of the 
variation, while principal component 2 (PC2) accounted 
for 11.67%. Water availability and wind speed had 
evidently played as the major role for the quantification 
of climate spaces, since they were significantly correlated 
with the PC1 and PC2, respectively (Table 2).  

 
 

Fig. 4. Climate spaces quantified by principal components 
analysis (PCA). PCA coordination constructed by PCA I and II.  
The grey circles are background points. Green and sky-blue 
points are climate spaces of grassland’s potential distribution 
range projected by RF based on the true absence and pseudo-
absence data, respectively. Yellow and red points are presence 
and true absence data of natural grassland, respectively. Empty 
stars represent meteorological stations. Locations of four 
meteorological stations, Anbu, Datunshan, Wuzhishan, and 
Wufenshan, were overlapped with the presence data, absence 
data, and potential range of natural grassland. Zhuzhihu station 
is distant from the potential range of natural grassland along PCA 
axis III in the diagram. 
 

Climate spaces of presence data, true absence data, 
and potential range of natural grassland projected by RF 
based on the two types of absence data were overlapped 
in the PCA diagram (Fig. 4). The potential range of 
natural grassland based on pseudo-absence data had 
wider climate space than that based on true absence data. 
Wider climate space quantified by PCA was consistent 
with wider potential range of natural grassland projected 
by RF algorithm. In PCA diagram, locations of true 
absence data were close to the locations of presence data 
that was similar to the small geographical distances 
between presence and true-absence data. Four 
meteorological stations, Datunshan, Anbu, Wuzhishan, 
and Wufenshan, were geographically close to the natural 
grassland that had represented climate characteristics of 
the natural grassland. Climate environments of the four 
meteorological stations were characterized by 
significantly lower temperatures, higher annual and 
winter precipitations, and strong winds that were 
significantly different from most of the other 
meteorological stations detected by ANOVA and Tukey 
HSD post-hoc statistical test (Table 3). 
 
DISCUSSION 

 
In this study, six model algorithms had all projected 

similar patterns of potential distribution range of natural 
grassland and RF algorithm had correlated climate data
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with georeferenced occurrences data to predict potential 
distribution range and to determine climate environments 
of natural grassland. Occurrences of natural grassland 
along mountain ridges at low elevation is consistent with 
the presence of low elevation treeline in Taiwan. Many 
studies had previously proposed climate characteristics of 
treeline appeared at alpine zone and alpine treeline is 
commonly characterized by harsh environments 
(Germino et al., 2002; Hoch and Korner, 2003; Korner, 
1998; Liu et al., 2011; Mohapatra et al., 2019; Stevens 
and Fox, 1991). A global comparison of alpine treeline 
positions in humid regions revealed very similar mean 
growing season temperatures at the treeline between 5 
and 7 °C, irrespective of the geographical latitude (Hoch 
and Korner, 2003; Korner, 1998). From the results of 
model evaluation in this study, temperature variation is 
the most important determinant of low elevation natural 
grassland in Taiwan, particularly based on pseudo-
absence data (Table 1). Based on the climate 
characteristics of the four meteorological stations near 
natural grassland (Table 3), Tcld reaches 4 °C is lower 
than the mean growing season temperatures at the alpine 
treeline. That is, lowest temperature in coldest month is 
the probable factor limiting the growth of evergreen 
broadleaved trees near mountain ridge at subtropical 
humid mountainous areas. On the other hand, the results 
of PCA had indicated that heavy precipitation and strong 
wind speed were the probable factors related to the 
occurrences of natural grassland at mountain ridge of low 
elevations in NTWN. The major climate factor related to 
the occurrence of natural grassland is not consistent 
between RF model and PCA. Thus, occurrences of 
natural grassland as well as limits of treeline at low 
elevation was presumably determined by multiple factors, 
such as relatively low temperature, heavy precipitations, 
and strong winds. Further studies will be necessary for 
identifying limiting factors of evergreen tree species at 
mountain ridge of low elevations in humid subtropical 
mountainous areas.  

Climate environment in NTWN was highly affected 
by monsoon winds (Chen and Tsai, 1983). The 
meteorological stations at the coastal range of the study 
area (Table 1), including Daping, Fuguijiao, Fulong, 
Ruifang, Sanhe, Sanzhi, Shuangxi, had received high 
winter precipitation that was accompanied by winter 
monsoon wind. Winter precipitation from winter 
monsoon wind have resulted in high annual total 
precipitation of the coastal range in NTWN. On the 
contrary, the meteorological stations at inland area of 
NTWN, including Dazhi, Nangang, Neihu, Shipai, Shilin, 
Tianmu, Xinyi, possessed higher summer precipitation 
(Table 1) that is accompanied by summer monsoon wind. 
The differentiation of temperature and precipitation 
between coastal and inland areas as well as between 
windward and leeward slopes derived from monsoon 
wind had affected on the model performances in the study 

area. It warrants more attentions in future studies of 
modeling plant distributions.  

Gridded climate dataset with 50 × 50 spatial 
resolution developed in this study was available to 
precisely project potential distribution range and to 
quantify climate space of natural grassland at landscape 
scale in subtropical humid mountainous areas. The local 
climate dataset interpolated from daily data of 
meteorological stations and followed by altitudinal 
adjustment to generate gridded climate dataset was 
available to model potential distribution range of natural 
grassland at landscape scale. The local climate dataset 
had evidently and effectively reflected habitat 
heterogeneity between coastal and inland areas of NTWN. 
Gridded climate dataset used in this study was suggested 
to apply for modeling potential distribution range of rare 
or endangered plant species in NTWN.  

SDMs correlated high-resolution climate data and 
georeferenced occurrence data to predict potential 
distribution range of species and characterized climatic 
dimensions of a species’ niche (Evans et al., 2009; 
Peterson et al., 2011). In this study, natural grassland was 
restricted along mountain ridges in NTWN and 
predominated by two species, Miscanthus sinensis and 
Pseudosasa usawai (Liao et al., 2014). Distribution range 
and climatic environments were indiscriminate between 
the two species. Niche convergence among phylogenetic 
distantly related species has played a primary role in 
driving community assembly in local vegetation along 
altitudinal gradient (Pearse and Hipp, 2012; Qian, 2017). 
These two species were assumed to have convergence of 
climatic niche along environmental gradient in 
subtropical mountainous areas, and further studies will be 
necessary to conduct on this topic.  

The effect of true absence data on modeling species 
distribution range was distinct from that of pseudo-
absence data. The potential range projected by RF based 
on true absence data had accurately reflected real 
geographical range of natural grassland. Distribution 
range of natural grassland is easily to verify in the field 
because of distinct boundaries between natural grassland 
and evergreen broadleaved forests. True absence data was 
geographically close to the boundaries of natural 
grassland, and the potential range projected by RF based 
on pseudo-absence was geographically wider than the 
true absence data (Fig. 2D, 2E and 2F). Thus, RF 
prediction based on pseudo-absence was an inaccurate 
model performance in this study, even though the AUC 
scores were higher. AUC was frequently used to detect 
model performance (Chapman et al., 2019; Lannuzel et 
al., 2021; Lobo et al., 2008; Tomlinson et al., 2020; Xu 
et al., 2021; Zhu et al., 2018). However, AUC does not 
provide sufficient information about the model errors 
(Lobo et al., 2008). Pseudo-absence data more 
environmentally distant from the presence data lead to 
higher AUC scores but not guarantee an accurate 
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distribution map projected by SDMs.  
The magnitude of over- and under-prediction of 

species distribution range would greatly affect 
management strategies for conservation of species (Early 
and Sax, 2014), particularly in mountainous areas with 
isolated and fragmented suitable habitats. In this study, 
model prediction based on pseudo-absence data had 
evidently over-predicted species potential distribution 
range, since RF had projected a distribution map with 
wider potential range along mountain ridge based on 
pseudo-absence data (Fig. 2). The risk of true absence 
data may have resulted in under-prediction of potential 
range when true absence data were geographically close 
to the boundaries of the natural distribution range. 
Accurate contemporary distribution range of rare or 
endangered species is particularly important for their 
conservation in mountainous areas. However, it is 
challenging to project an accurate contemporary 
distribution range of plant species based on true absence 
data. Thus, an accurate contemporary distribution map of 
rare or endangered species was suggested to complement 
potential distribution ranges projected by SDMs based on 
the two types of absence data. Although comprehensive 
collection of true absence data is a difficult task in 
mountainous areas, collections of true absence data along 
a known environmental gradient, for example altitudinal 
gradient, is a costly but easier task. Model algorithms will 
perform better when the models were calibrated by some 
true absence data and some pseudo-absence data. Over-
prediction of pseudo-absence data and under-prediction 
of true absence data could have a complemented result in 
the model predictions. A more accurate map of species 
distribution range will be generated, and that will be 
better for planning conservation management in 
mountainous areas with complex topography and mixed 
natural and artificial ecosystems. 

 

ACKNOWLEDGMENTS 
 

The author deeply appreciates assistant researcher Lin, 
Huan-Yu in Taiwan Forestry Research Institute for his helping 
and sharing technique of climate data interpolation. The authors 
appreciate Mr. Kai-Jie Yang in the Institution of Geography, 
Chinese Culture University, Taipei, Taiwan for technical 
support of ArcGIS software. 

 

LITERATURE CITED 
 
Anacker, B. L., M. Gogol-Prokurat, K. Leidholm and S. 

Schoenig. 2013. Climate change vulnerability assessment of 
rare plants in California. Madroño 60(3): 193–210. 

Anderson‐Teixeira, K.J., S.J. Davies, A.C. Bennett, E. B. 
Gonzalez‐Akre, H.C. Muller‐Landau, S.J. Wright, K.A. 
Salim, A.M.A. Zambrano, A. Alonso, J.L. Baltzer, Y. 
Basset, N.A. Bourg, E.N. Broadbent, W.Y. Brockelman, 
S. Bunyavejchewin, D.F.R.P. Burslem, N. Butt, M. Cao, 
D. Cardenas, G.B. Chuyong, K. Clay, S. Cordell, H.S. 
Dattaraja, X. Deng, M. Detto, X. Du, A. Duque, D.L. 

Erikson, C.E.N. Ewango, G.A. Fischer, C. Fletcher, R.B. 
Foster, C.P. Giardina, G.S. Gilbert, N. Gunatilleke, S. 
Gunatilleke, Z. Hao, W.W. Hargrove, T.B. Hart, B.C.H. 
Hau, F. He, F.M. Hoffman, R.W. Howe, S.P. Hubbell, 
F.M. Inman-Narahari, P.A. Jansen, M. Jiang, D.J. 
Johnson, M. Kanzaki, A.R. Kassim, D. Kenfack, S. Kibet, 
M.F. Kinnaird, L. Korte, K. Kral, J. Kumar, A.J. Larson, 
Y. Li, X. Li, S. Liu, S.K.Y. Lum, J.A. Lutz, K. Ma, D.M. 
Maddalena, J.-R. Makana, Y. Malhi, T. Marthews, 
R.M.Serudin, S.M. McMahon, W.J. McShea, H.R. 
Memiaghe, X. Mi, T. Mizuno, M. Morecroft, J.A. Myers, 
V. Novotny, A.A. de Oliveira, P.S. Ong, D.A. Orwig, R. 
Ostertag, J. den Ouden, G.G. Parker, R.P. Phillips, L. 
Sack, M.N. Sainge, W. Sang, K. Sri-Ngernyuang, R. 
Sukumar, I-F. Sun, W. Sungpalee, H.S. Suresh, S. Tan, 
S.C. Thomas, D.W. Thomas, J. Thompson, B.L. Turner, 
M. Uriarte, R. Valencia, M.I. Vallejo, A. Vicentini, T. 
Vrška, X. Wang, X. Wang, G. Weiblen, A. Wolf, H. Xu, 
S. Yap, J. Zimmerman 2015. CTFS‐forestGEO: A 
worldwide network monitoring forests in an era of global 
change. Glob. Chang. Biol. 21(2): 528–549. 

Arroyo‐Rodríguez, V., F.P. Melo, M. Martínez‐Ramos, F. 
Bongers, R.L. Chazdon, J.A. Meave, S.J. Wright, N. 
Norden, B.A. Santos, I.R. Leal, M. Tabarelli. 2015. 
Multiple successional pathways in human‐modified tropical 
landscapes: New insights from forest succession, forest 
fragmentation and landscape ecology research. Biol. Rev. 
92(1): 326–340. 

Barbet‐Massin, M., F. Jiguet, C. H. Albert and W. Thuiller. 
2012. Selecting pseudo‐absences for species distribution 
models: How, where and how many? Methods Ecol. Evol. 
3(2): 327–338. 

Booth, T. H., H. A. Nix, J. R. Busby and M. F. Hutchinson. 
2014. BIOCLIM: The first species distribution modelling 
package, its early applications and relevance to most current 
MAXENT studies. Diversity and Distributions 20(1): 1–9. 

Breiman, L. 2001. Random forests. Mach. Learn. 45(1): 5–32. 
Brunialti, G. and L. Frati. 2021. Modeling of species 

distribution and biodiversity in forests. Forests 12(3): 319. 
Chambers, J. and T. Hastie. 1992. Linear Models. Chapter 4 

of statistical models in S. Wadsworth & Brooks/Cole  
Chapman, D., O. L. Pescott, H. E. Roy and R. Tanner. 2019. 

Improving species distribution models for invasive non‐
native species with biologically informed pseudo‐absence 
selection. J. Biogeogr. 46(5): 1029–1040. 

Chen, W. K. and C. Y. Tsai. 1983. The climate of 
Yangmingshan National Park. Yangmingshan National Park, 
Construction and Planning Agency Ministry of the Interior, 
Executive Yuan, Taipei, Taiwan  

Dobrowski, S. Z. 2011. A climatic basis for microrefugia: The 
influence of terrain on climate. Glob. Chang. Biol. 17(2): 
1022–1035. 

Dubuis, A., J. Pottier, V. Rion, L. Pellissier, J. P. Theurillat 
and A. Guisan. 2011. Predicting spatial patterns of plant 
species richness: A comparison of direct macroecological 
and species stacking modelling approaches. Divers. Distrib. 
17(6): 1122–1131. 

Dupin, M., P. Reynaud, V. Jarošík, R. Baker, S. Brunel, D. 
Eyre, J. Pergl, D. Makowski, S. Thrush. 2011. Effects of 
the training dataset characteristics on the performance of 
nine species distribution models: Application to Diabrotica 
virgifera virgifera. Plos One 6(6): e20957 



2022 Liao & Chen: Effects of true and pseudo-absence data 
 

 
 

19 

Early, R. and D. F. Sax. 2014. Climatic niche shifts between 
species' native and naturalized ranges raise concern for 
ecological forecasts during invasions and climate change. 
Glob. Ecol. Biogeogr. 23(12): 1356–1365. 

Elith, J. and J. R. Leathwick. 2009. Species distribution 
models: Ecological explanation and prediction across space 
and time. Ann. Rev. Ecol. Evol. Syst. 40(1): 677–697. 

Evans, M. E., S. A. Smith, R. S. Flynn and M. J. Donoghue. 
2009. Climate, niche evolution, and diversification of the 
“bird‐cage” evening primroses (Oenothera, Sections Anogra 
and Kleinia). Am. Nat. 173(2): 225–240. 

Fick, S. E. and R. J. Hijmans. 2017. Worldclim 2: New 1‐km 
spatial resolution climate surfaces for global land areas. Int. 
J. Climatol. 37(12): 4302–4315. 

Fois, M., G. Fenu, A. C. Lombrana, D. Cogoni and G. 
Bacchetta. 2015. A practical method to speed up the 
discovery of unknown populations using species 
distribution models. J. Nat. Conserv. 24: 42–48. 

Germino, M. J., W. K. Smith and A. C. Resor. 2002. Conifer 
seedling distribution and survival in an alpine-treeline 
ecotone. Plant Ecol. 162(2): 157–168. 

Gies, M., M. Sondermann, D. Hering and C. K. Feld. 2015. 
Are species distribution models based on broad-scale 
environmental variables transferable across adjacent 
watersheds? A case study with eleven macroinvertebrate 
species. Fundamental and Applied Limnology/Archiv für 
Hydrobiologie 186(1-2): 63–97. 

Guillera‐Arroita, G., J.J. Lahoz‐Monfort, J. Elith, A. 
Gordon, H. Kujala, P.E. Lentini, M.A. McCarthy, R. 
Tingley, B.A. Wintle. 2015. Is my species distribution 
model fit for purpose? Matching data and models to 
applications. Glob. Ecol. Biogeogr. 24(3): 276–292. 

Hegel, T.M., S.A. Cushman, J. Evans and F. Huettmann. 
2010. Current State of the Art for Statistical Modelling of 
Species Distributions. In: Cushman, S.A. and F. 
Huettmann (eds). Spatial complexity, informatics, and 
wildlife conservation, 273–311 pp. Springer, Tokyo. 

Hoch, G. and C. Korner. 2003. The carbon charging of pines 
at the climatic treeline: A global comparison. Oecologia 
135(1): 10–21. 

Hsieh, C. F., W. C. Chao, C. C. Liao, K. C. Yang and T. H. 
Hsieh. 1997. Floristic composition of the evergreen broad-
leaved forests of Taiwan. Nat. Hist. Res. 4: 1–16. 

Kier, G., H. Kreft, T. M. Lee, W. Jetz, P. L. Ibisch, C. 
Nowicki, J. Mutke, W. Barthlott. 2009. A global 
assessment of endemism and species richness across island 
and mainland regions. PNAS 106(23): 9322–9327. 

Korner, C. 1998. A re-assessment of high elevation treeline 
positions and their explanation. Oecologia 115(4): 445–459. 

Lannuzel, G., J. Balmot, N. Dubos, M. Thibault and B. 
Fogliani. 2021. High-resolution topographic variables 
accurately predict the distribution of rare plant species for 
conservation area selection in a narrow-endemism hotspot 
in New Caledonia. Biodivers. Conserv. 30(4): 963–990 

Li, C.F., M. Chytrý, D. Zelený, M.Y. Chen, T.Y. Chen, C.R. 
Chiou, Y.-J. Hsia, H.-Y. Liu, S.-Z. Yang, C.-L. Yeh, J.-
C. Wang, C.-F. Yu, Y.-J. Lai, W.-C. Chao, C.-F. Hsieh, 
H. Bruelheide 2013. Classification of Taiwan forest 
vegetation. Appl. Veg. Sci. 16(4): 698–719. 

Liang, W., M. Papeş, L. Tran, J. Grant, R. Washington-
Allen, S. Stewart and G. Wiggins. 2018. The effect of 
pseudo-absence selection method on transferability of 

species distribution models in the context of non-adaptive 
niche shift. Ecol Model 388: 1–9. 

Liao, C.C., S.C. Kuo and C.R. Chang. 2012. Forest 
distribution on small isolated hills and implications on 
woody plant distribution under threats of global warming. 
Taiwania 57(3): 242–250. 

Liao, C.C., C.R. Chang, M.T. Hsu and W.K. Poo. 2014. 
Experimental evaluation of the sustainability of dwarf 
bamboo (Pseudosasa usawai) sprout-harvesting practices in 
Yangminshan National Park, Taiwan. Environ. Manage. 
54(2): 320–330. 

Liao, C. C. and Y. H. Chen. 2021. Improving performance of 
species distribution model in mountainous areas with 
complex topography. Ecol. Res. 36(4): 648–662. 

Liaw, A. and M. Wiener. 2002. Classification and regression 
by random forest. R news 2: 18–22. 

Liu, B., E. Liang and L. Zhu. 2011. Microclimatic conditions 
for Juniperus saltuaria treeline in the Sygera Mountain, 
Southeastern Tibetan plateau. Mt. Res. Dev. 31(1): 45–53. 

Lobo, J. M., A. Jiménez‐Valverde and R. Real. 2008. AUC: 
A misleading measure of the performance of predictive 
distribution models. Glob. Ecol. Biogeogr. 17(2): 145–151. 

Mohapatra, J., C. P. Singh, M. Hamid, A. Verma, S. C. 
Semwal, B. Gajmer, A.A. Khuroo, A. Kumar, M.C. 
Nautiyal, N. Sharma, H.A. Pandya. 2019. Modelling 
Betula utilis distribution in response to climate-warming 
scenarios in Hindu-Kush Himalaya using random forest. 
Biodivers. Conserv. 28(8-9): 2295–2317. 

Pearse, I. S. and A. L. Hipp. 2012. Global patterns of leaf 
defenses in oak species. Evolution 66(7): 2272–2286. 

Peng, D., L. Sun, H. W. Pritchard, J. Yang, H. Sun and Z. 
Li. 2019. Species distribution modelling and seed 
germination of four threatened snow lotus (Saussurea), and 
their implication for conservation. Glob. Ecol. Biogeogr. 17: 
e00565. 

Peterson, A. T., J. Soberón, R. G. Pearson, R. P. Anderson, 
E. Martínez-Meyer, M. Nakamura and M. B. Araújo. 
2011. Ecological Niches and Geographic Distributions 
(MPB-49). Princeton University Press. 

Porfirio, L.L., R.M. Harris, E.C. Lefroy, S. Hugh, S.F. 
Gould, G. Lee, N.L. Bindoff, B. Mackey, L. Kumar. 2014. 
Improving the use of species distribution models in 
conservation planning and management under climate 
change. Plos One 9(11): e113749. 

Pradervand, J.-N., A. Dubuis, L. Pellissier, A. Guisan and C. 
Randin. 2014. Very high resolution environmental 
predictors in species distribution models: Moving beyond 
topography? Prog. Phys. Geog. 38(1): 79–96. 

Qian, H. 2017. Climatic correlates of phylogenetic relatedness 
of woody angiosperms in forest communities along a 
tropical elevational gradient in South America. J. Plant Ecol. 
11(3): 394–400. 

Qiao, H., X. Feng, L. E. Escobar, A. T. Peterson, J. Soberón, 
G. Zhu and M. Papeş. 2019. An evaluation of 
transferability of ecological niche models. Ecography 42(3): 
521–534. 

Senay, S. D., S. P. Worner and T. Ikeda. 2013. Novel three-
step pseudo-absence selection technique for improved 
species distribution modelling. Plos One 8(8): e71218. 

Smith, W.K., M.J. Germino, D.M. Johnson and K. Reinhardt. 
2009. The altitude of alpine treeline: A bellwether of climate 
change effects. Bot Rev 75(2): 163–190. 



 
Taiwania Vol. 67, No. 1 

 
 

20 

Stevens, G. C. and J. F. Fox. 1991. The causes of treeline. 
Annu Rev Ecol Syst 22(1): 177–191. 

Thuiller, W., D. Georges, R. Engler, F. Breiner, M. D. 
Georges and C. W. Thuiller. 2016. Package ‘biomod2’. 
Species distribution modeling within an ensemble 
forecasting framework. 

Title, P. O. and J. B. Bemmels. 2018. ENVIREM: An 
expanded set of bioclimatic and topographic variables 
increases flexibility and improves performance of 
ecological niche modeling. Ecography 41(2): 291–307. 

Tomlinson, S., W. Lewandrowski, C. P. Elliott, B. P. Miller 
and S. R. Turner. 2020. High‐resolution distribution 
modeling of a threatened short‐range endemic plant 
informed by edaphic factors. Ecol. Evol. 10(2): 763–777. 

Tsoar, A., O. Allouche, O. Steinitz, D. Rotem and R. 
Kadmon. 2007. A comparative evaluation of presence‐only 
methods for modelling species distribution. Divers. Distrib. 
13(4): 397–405. 

Wisz, M. S. and A. Guisan. 2009. Do pseudo-absence selection 
strategies influence species distribution models and their 
predictions? An information-theoretic approach based on 
simulated data. BMC Ecology 9(1): 1–13. 

Xu, Y., Y. Huang, H. Zhao, M. Yang, Y. Zhuang and X. Ye. 
2021. Modelling the effects of climate change on the 
distribution of endangered Cypripedium japonicum in china. 
Forests 12(4): 429. 

Zhu, Y., W. Wei, H. Li, B. Wang, X. Yang and Y. Liu. 2018. 
Modelling the potential distribution and shifts of three 
varieties of Stipa tianschanica in the eastern Eurasian steppe 
under multiple climate change scenarios. Glob. Ecol. 
Biogeogr. 16: e00501. 

 
 
 

 
 
 
 
 
 
 

Supplementary materials are available from Journal Website. 
 
 


