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ABSTRACT: Sustainable forest management needs information on spatial distribution of species richness. The objectives of this 
study were to understand whether knowledge, method, and effort of a rapid assessment affected accuracy and consistency in 
mapping species richness. A simulation study was carried out with nine 25–50 ha census plots located in tropical, subtropical, and 
temperate zones. Each forest site was first tessellated into non-overlapping cells. Rapid assessment was conducted in all cells to 
generate a complete coverage of proxies of the underlying species richness. Cells were subsampled for census, where all plant 
individuals were identified to species in these census cells. An artificial neural network model was built using the census cells that 
contain rapid assessment and census information. The model then predicted species richness of cells that were not censused. Results 
showed that knowledge level did not improve the accuracy and consistency in mapping species richness. Rapid assessment effort 
and method significantly affected the accuracy and consistency. Increasing rapid assessment effort from 10 to 40 plant individuals 
could improve the accuracy and consistency up to 2.2% and 2.8%, respectively. Transect reduced accuracy and consistency by up 
to 0.5% and 0.8%, respectively. This study suggests that knowing at least half of the species in a forest is sufficient for a rapid 
assessment. At least 20 plant individuals per cell is recommended for rapid assessment. Lastly, a rapid assessment could be carried 
out by local communities that are familiar with their forests; thus, further supporting sustainable forest management. 
 
KEY WORDS: artificial neural network, rapid biodiversity assessment, sustainable forest management, forest planning. 
  
INTRODUCTION 

 
Plant diversity is an important ecosystem service 

provided by forests that benefits human society such as 
providing medicinal plants (Gascon et al., 2015) and 
protecting endangered species (Villero et al., 2017). 
Conserving plant diversity is central to sustainably 
managing forest resources for meeting global demand on 
wood fiber. Sample (2005) suggested that sustainable 
forestry should include a mixture of reserves for 
biodiversity, intensively managed plantations for 
production, and moderately managed forests for multiple 

objectives. This could be realized through forest 
landscape planning strategies such as the Biosphere 
Reserve Model (Pool-Stanvliet et al., 2018) or the 
TRIAD zoning (Seymour and Hunter, 1992). To 
designate which forest parcels as reserves for plant 
diversity or for other management objectives requires 
information on spatial distribution of plant diversity. 
Thus, there is a continuing effort to refine existing 
approaches or develop new ones to generate the 
information. 

Plant species richness, generally defined as the 
number of plant species in a forest, is adopted by the 
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Montréal Process and the Helsinki Process as an indicator 
for sustainable forestry (Hall, 2001). A map showing 
spatial patterns of species richness could support 
conservation planning. Since it is impossible to 
enumerate every plant individual, mapping spatial 
patterns of species richness relies on observed data and 
spatial models (Pearson and Carroll, 1998). Observed 
data could come from ground samples, but sample size is 
usually small and samples are sparsely distributed (Chong 
et al., 2001; Haas et al., 2006). Based on the assumption 
that heterogeneous environment could host more species, 
remotely sensed images have been used to derive proxy 
of species richness to map its spatial pattern over large 
area (Rocchini et al., 2010). Example proxy include 
normalized difference vegetation index (Pau et al., 2012) 
and fraction of photosynthetically active radiation (Coops 
et al., 2019). Despite its many potentials, there are 
challenges such as spatial resolution of images, expertise 
needed in image processing, and complex data analyses 
(Rocchini et al., 2016). 

A proxy will theoretically predict spatial distribution 
of species richness well as long as it is highly correlated 
with the underlying species richness. This is the 
motivation behind developing different proxies from 
remotely sensed images (Rocchini et al., 2010). In this 
study, we propose deriving proxy from field rapid 
assessment of plant species richness. Our proposed 
strategy is adapted from Lam et al. (2018). A forest is first 
tessellated into non-overlapping cells of equal size, and 
each cell is visited. A number of plant individuals are 
rapidly selected and identified to species. Once all cells 
are rapidly assessed, a subsample of cells are randomly 
selected for census of the species within. As a result, all 
cells have information from the rapid assessment with 
only some cells having true species richness from the 
census. Lam et al. (2018) then took the information and 
built the estimators to estimate average cell-level species 
richness. However, the estimators were not intended to 
estimate spatial distribution of species richness. Thus, no 
mapping was carried out in Lam et al. (2018). To the best 
of our knowledge, there has been little work on using 
rapid assessment to assist spatial mapping of species 
richness. In this study, we further the work of Lam et al. 
(2018) by extracting proxies such as cell spatial locations 
and diversity indices from the rapid assessment for every 
cell. A prediction model is built with the census cells by 
correlating the proxies and the true species richness. The 
model then predicts species richness of the cells that have 
not been censused and produces a final spatial map of 
species richness. 

The proposed rapid assessment could be carried out 
by an expert such as a botanist or by a local community 
familiar with a forest. Local or traditional knowledge is 
increasingly recognized for its contribution to sustainable 
forestry (Parrotta et al., 2016). For example, Thapa et al. 
(1995) found that local knowledge increased 

understanding of species diversity and ecological 
interactions in Nepal agroforestry. There are other 
benefits by involving local communities in rapid 
assessment. For example, principles of the Forest 
Stewardship Council certification scheme (FSC, 2012) 
requires any applicant to demonstrate active involvement 
and consultation with local or indigenous communities in 
forest management activities. A challenge involving a 
local community in rapid assessment is their knowledge 
on local plant species. Knowledge of a local community 
is likely to be different to an expert, e.g., members of local 
community are more likely to identify culturally 
significant or abundant plant species in a near perfect 
manner than less common species (Lam and Kleinn, 
2008).  

Humphreys et al. (2019) calculated that the average 
annual extinction rate of seed plant for the past 250 years 
was about 2.3 species per year, which was faster than 
expected. Pimm and Raven (2000) warned that many 
plant species could disappear before they were identified 
due to anthropogenic influence. With many communities 
around the world depending on forest natural resources, 
this highlights the urgent need to sustainably manage 
forest resources while conserving plant diversity. 
Sustainable forest management requires adequate 
information and appropriate tools (Baskerville, 1986). 
The information and tools are the scientific bases for 
monitoring spatial and temporal changes in a plant 
community (Winter et al., 2008) so that a management 
decision could be made. The overall goal of this study 
was to assess whether information from a rapid 
assessment improved accuracy and consistency in 
mapping species richness. In particular, this study aimed 
to understand how (1) knowledge level during a rapid 
assessment, (2) method and effort of a rapid assessment, 
and (3) sampling intensity of a census influence the 
accuracy and consistency. An artificial neural network 
model was built to predict spatial distribution of species 
richness. Lastly, this study was carried out as a simulation 
study with nine 25 to 50 ha census plots from tropical, 
subtropical, and temperate regions.  

 

MATERIALS AND METHODS 
 
Data 

In this study, nine large permanent Forest Dynamics 
Census Plots (hereafter as sites) from the Forest Global 
Earth Observatory Network (ForestGEO; forestgeo.si.edu) 
were used for the simulation (Table 1). Six of the nine sites 
were in the tropics with one in the subtropics and two in the 
temperate zone. The areas of the nine sites ranged from 25 
to 50 ha. The plant census protocols were identical between 
sites. All woody plant individuals with diameter at breast 
height ≥ 1 cm were mapped, measured, and identified to 
species. In this study, plant individuals of unknown species 
were removed, and only the main stem of an individual
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Table 1. Characteristics of the nine long-term forest dynamics census plots. 
 

Plot Country Ecological 
Zone 

Plot 
Area 
(ha) 

Plot  
Plant 
Count 

Plot 
Species 
Richness 

Cell 
Count 
(N) 

Cell  
Species 
Richness 

Cell  
Plant 
Count 

Year Reference 

Amacayacu Colombia Tropical  25 116,570 1,233 625 102 
(23.4%) 

187 
(23.9%) 

2007 Duque et al., 2017; 
Zuleta et al., 2020 

Pasoh Malaysia Tropical  50 335,343 820 1250 127 
(11.9%) 

268 
(19.3%) 

1985 Manokaran and 
LaFrankie, 1990 

Danum Malaysia Tropical  50 233,408 693 1250 71 
(19.6%) 

187 
(21.9%) 

2011 O’Brien et al., 2022 

Wanang Papua New 
Guinea 

Tropical  50 253,653 581 1250 84 
(18.8%) 

192 
(28.1%) 

2009 Vincent et al., 2015 

BCI Panama Tropical  50 221,758 302 1250 52 
(17.2%) 

177 
(19.9%) 

2010 Hubbell et al., 1999; 
Condit et al., 
2019a,b,c  

Sinharaja Sri Lanka Tropical  25 207,469 238 625 52 
(19.8%) 

332 
(37.5%) 

1996 Anderson‐Teixeira et 
al., 2015 

Fushan Taiwan Subtropical  25 114,354 110 625 31 
(26.0%) 

183 
(44.3%) 

2004 Su et al., 2007  

SCBI USA Temperate 25.6 29,771 68 640 10 
(27.9%) 

47 
(103%) 

2008 Bourg et al., 2013 

Wind River USA Temperate 27.2 31,722 26 680 5 
(24.4%) 

50 
(45.2%) 

2010 Lutz et al., 2013, 2014 

Ecological zone is defined by the ForestGEO classification (forestgeo.si.edu). Plot plant count = total number of plant individuals in a 
plot. Plot species richness = total number of species in a plot. Cell count = total number of non-overlapping 20 × 20 m cells in a plot. 
Cell species richness = average number of species in a cell with its coefficient of variation in parentheses. Cell plant count = average 
number of plant individuals in a cell with its coefficient of variation in parentheses. Year = year of data collection 
 
plant was used in the simulation. Lianas were not included 
in the analysis. Hence, species richness in this study was 
defined as the number of woody plant species. In summary, 
species richness of the nine sites ranged from 26 to 1233 
species with 1163 to 8299 plant individuals per ha.  

 
Rapid assessment  

A site was first tessellated into non-overlapping cells 
of 20 × 20 m (0.04 ha) (Fig. 1A). The total number of 
cells (N) varied between sites from 625 to 1250 (Table 1). 
The average species richness in a cell ranged from 5 to 
127 (Table 1). As mentioned above, rapid assessment was 
carried out in all N cells of a site (hereafter as N rapid cells) 
(Fig. 1C). Simulation of rapid assessment was designed 
around three factors: (1) knowledge level (KN), (2) rapid 
assessment effort (RE), and (3) rapid assessment type 
(RT). KN simulated how much a person know about plant 
species in a forest. The factor has three levels: 50% 
(KN50), 75% (KN75), and 100% (KN100) assuming that 
a person could identify 50%, 75%, and 100% of all the 
species in a forest, respectively (Fig. 1C). The levels 
KN50 and KN75 were chosen to represent knowledge of 
a local community, while KN100 represented an expert 
with full knowledge. To simulate KN50 and KN75, a 
“known” species list of a site was generated by randomly 
selecting species without replacement and with 
probability proportional to their total abundance in the 
site. In other words, the “known” species list consisted of 
randomly selected locally abundant species. This 
assumed that the survey person was more familiar with 
the locally abundant species than the rare ones. 

The factor RE simulated effort spent in rapid 
assessment represented by the number of individuals in a 

cell selected for species identification. RE had three levels: 
10 (RE10), 20 (RE20), and 40 (RE40) individuals (Fig. 1C). 
For a selected individual, its species was matched to a 
“known” species list generated from a KN level as above. 
If its species was in the list, it was recorded; otherwise, the 
individual was discarded because it was unknown. As a 
result, the recorded number of selected individuals in a cell 
could be less than a designated RE level depending on the 
“known” species list. This procedure better reflected field 
operation and explored the effects of incomplete 
knowledge on mapping species richness. 

RT simulated the method by which RE plant 
individuals were selected in a cell for identification. Two 
types of selection were explored: (1) random walk 
(RTrw), and (2) transect (RTtr) (Fig. 1C). RTrw 
mimicked randomly walking around in a cell and 
selecting individuals. RTrw was simulated by randomly 
selecting individuals in a cell with equal probability. RTtr 
mimicked selecting individuals along a transect while 
traversing it. To simulate RTtr, a transect was randomly 
placed across each row of cells in a site; thus, placement 
of transects was independent between rows. Each cell was 
then subdivided into five equal intervals. Number of 
individuals selected for identification in each interval was 
one-fifth of RE (i.e., RE/5). Individuals within each 
interval located closest to the transect in the perpendicular 
distance was selected. If the total number of individuals 
in a cell was less than RE, all individuals were selected. 

 
Census and sampling intensity 

A subsample of n rapid cells was selected for census by 
simple random sampling (SRS) (hereafter as census cells) 
(Fig. 1B). The n census cells were randomly selected with
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Fig. 1. Study methodology. A. a site is tessellated into N cells. B. Census is carried out in n random cells with different sampling 
intensities. C. Rapid assessment is carried out in all N cells with different combinations of knowledge level and rapid assessment effort 
and type; the two rapid assessment types are illustrated. D. Artificial neural network model building for baseline model with only census 
information and rapid model with both census and rapid assessment information. 
 
equal probability and without replacement. A census was 
carried out by identifying species of all plant individuals 
in a census cell. Subsampling was carried out at the seven 
sampling intensities: 5%, 10%, 15%, 20%, 25%, 30% and 
40% of N rapid cells in a site.  

 
Artificial neural network 

Artificial neural network (ANN) was applied to 
model the relationship between information from rapid 
assessment and census species richness and to predict 
underlying species richness of rapid cells that were not 
censused (Fig. 1D). To assess whether rapid assessment 
improved mapping of species richness, two ANN models 
were separately and independently built: baseline model 
and rapid model. The baseline model was trained using 
only the census information from the n census cells (Fig. 
1D). The rapid model was trained using the information 

from a rapid assessment combination and the census from 
the n census cells (Fig. 1D). 

An ANN model had a layer-by-layer structure 
consisted of three main layers arranged in sequence: an 
input layer, a network of hidden layers, and an output 
layer. The process of ANN model building discussed 
below was illustrated in Supplement Fig. S1. The input 
layer organized input data and fed them to the network of 
hidden layers for model construction. For the baseline 
model, the input data consisted of (1) census species 
richness (Scensus) as independent variable, and (2) cell 
coordinates as dependent variable. For the rapid model, 
the input data consisted of (1) census species richness, (2) 
cell coordinates, (3) rapid species richness, (4) rapid 
Shannon diversity index, and (5) rapid species vector. For 
the rapid model, the independent variable was census 
species richness, and the dependent variables were cell 
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coordinates, rapid species richness, rapid Shannon 
diversity index, and rapid species vector. Cell coordinates 
were the X-Y indices of the census cell. Scensus was 
defined as the total (true) number of species found in a 
census cell. Rapid species richness was defined as the 
number of species found in the rapid assessment of a 
census cell. Rapid Shannon diversity index was the well-
known Shannon index (Shannon, 1948) calculated with 
information from the rapid assessment of a census cell. 
Rapid species vector was a list of species name from the 
rapid assessment of a census cell. The input data were 
standardized so that they had similar distribution to 
maintain stability during model training. Standardization 
was done by subtracting values from their mean and 
dividing by their standard deviation.  

In this study, the network of hidden layers consisted 
of five layers with 64 artificial neurons per layer. An 
artificial neuron was controlled by an activation function. 
The function carried out pointwise nonlinear 
transformation of input data into a “signal”. A strong 
“signal” would cause the neuron to fire its outputs to the 
neurons in the next hidden layer. This study applied the 
Mish activation function (Misra, 2020), which preserved 
a small amount of negative weight so that an inactive 
neuron could be turned on again during the training. After 
passing through all hidden layers, an initial ANN model 
was built. The output layer then predicted species 
richness for each n census cell (Fig. S1). 

An ANN model was trained by minimizing the 
deviation between model prediction and true data (Fig. 
S1). As such, the next step was calculating the deviation 
between predicted species richness and Scensus for each n 
census cell. The deviations were used to compute loss 
with the Huber loss function (Huber, 1964), which was 
robust in handling outliers by combining mean square 
error and mean absolute error. Gradient of the computed 
loss was then calculated (Fig. S1). Using the 
backpropagation algorithm by Rumelhart et al. (1986), 
the gradient was transmitted backward through the 
network of hidden layers (Fig. S1). The Adam gradient 
descent optimizer (Kingma and Ba, 2015) was used to 
update the parameters in the hidden layers based on the 
back-propagated gradient. The Adam optimizer was 
chosen for its adaptiveness in avoiding local minimums. 
To prevent overfitting, two regularizer algorithms (Reg1 
and Reg2) and a dropout method by Srivastava et al. 
(2014) were applied. The training process was repeated 
50 times to produce the final ANN model for statistical 
analyses.  

 
Simulation 

Simulation was carried out independently for each 
site with 100 iterations each. As a result, simulation was 
independent between sites and between iterations within 
a site. For an iteration of a site, two major steps were 
carried out: (1) selection of n census cells, and (2) 

simulation of rapid assessment. For each of the seven 
sampling intensities, n census cells were selected by SRS. 
Thus, census cells were independent between sampling 
intensities. Eighteen rapid assessment combinations (3 
KN × 3 RE × 2 RT) were independently simulated. At 
first, a list of “known” species was generated according 
to a KN level as mentioned above. Thus, the “known” 
species list was randomized across iterations. Then, a RE 
number of individuals were selected according to a RT 
type. As mentioned above, the selected individuals were 
matched to the “known” species list, and individuals of 
unknown species were discarded. At the end of 
simulating an iteration for a site, there were 7 census 
datasets (7 sampling intensities) consisted of a list of plant 
individuals with their species and their corresponding 
census cell coordinates. There were also 18 rapid datasets 
similarly consisted of a list of plant individuals with their 
species and their corresponding rapid cell coordinates. 
Then, 7 final baseline ANN models were built from the 
census datasets, and 126 final rapid ANN models were 
built from both the census and the rapid datasets (3 KN × 
3 RE × 2 RT × 7 sampling intensity). The simulation and 
ANN model training and building were carried out in 
Python. Lastly, the Python codes for ANN model training 
and building with example datasets were publicly 
available at https://github.com/Bo-
Hao/ANN_example_code. 

 
Analysis  

Each final ANN model was used to predict species 
richness of N – n = M cells that were not censused. For a 
final baseline ANN model, M cells were cells that were 
not censused. For a final rapid ANN model, M cells were 
rapid cells that were not censused. Let m be the m-th rapid 
cell that was not censused, m = 1,…, M, Spred,m be the 
predicted species richness by a final ANN model for the 
m-th rapid cell, Strue,m be the total (true) number of species 
found in the m-th rapid cell. Percent absolute bias (PAB) 
of the m-th rapid cell was calculated as 

. Relative 
accuracy (Q) of the m-th rapid cell was calculated as 

, where Qm > 1 implied 
overestimation, and vice versa. 

The goal of this study was to assess accuracy and 
consistency of rapid assessment in mapping species 
richness. Accuracy was defined as mean percent absolute 
bias (MPAB), and consistency was defined as the 
coefficient of variation of relative accuracy (CVQ). For a 
final ANN model, MPABi of the i-th iteration was 
calculated by averaging PABim of all M rapid cells, 

. The CVQi of the i-th 
iteration was calculated as 

, , , 100%m pred m true m true mPAB S S S  

, ,m pred m true mQ S S

1

M

i imm
MPAB PAB M



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, where MQi was mean 

relative accuracy , and SDQi 
was standard deviation of relative accuracy 

. Hence, a 
larger MPAB indicated less accuracy, and vice versa. A 
low CVQ suggested that relative accuracy between M 
rapid cells were similar due to the smaller standard 
deviation compared to the mean. In other words, a low 
CVQ implied that predicted species richness from the 
final ANN model will be high for rapid cells whose true 
species richness was high and will be low for rapid cells 
whose true species richness was low. Thus, CVQ 
indicated that predictions of the final ANN model 
consistently reflected the true underlying species richness. 
CVQ is a useful indicator if only relative species richness 
is needed in mapping spatial distribution of species 
richness for forest management decision making. If so, a 
rapid assessment combination that produces low CVQ is 
preferred. 

To assess whether the information from rapid 
assessment improved mapping of species richness, 
accuracy and consistency of a final rapid ANN model 
were compared to those of a final baseline ANN model. 
For a given sampling intensity and for the i-th iteration, 
the difference in accuracy and consistency between a 
rapid ANN model (there were 18 rapid ANN models from 
the 18 rapid assessment combinations) and a baseline 
ANN model was calculated as 

 and 

 , respectively. A 
negative value in the difference in accuracy (dMPAB) 
and the difference in consistency (dCVQ) suggested that 
the information from rapid assessment improved 
accuracy and consistency in mapping species richness 
than the baseline. To address the objectives of the 
influence of the rapid assessment factors on mapping 
species richness, a three-way Analysis of Variance 
(ANOVA) model was developed,  

  
where, Y was either dMPAB or dCVQ. In the three-

way ANOVA model, the site factor was included and 
treated as blocks to control for potential variations 
between sites. The three-way ANOVA model was fitted 
separately for each of the 7 sampling intensities. We 
conducted the Shapiro-Wilk test of normality for each 
combination of sites, sampling intensities, KN, RE, and 
RT. The average p-values for dMPAB and dCVQ were 
0.3446 and 0.3287, respectively.  

 

RESULTS 
 

The three-way ANOVA analysis indicated a 
significant site effect on dMPAB and dCVQ consistently 
across sampling intensity (p < 0.001; Fig. 2). This 
suggested inherent differences among the nine sites on 
improving accuracy and consistency in mapping species 
richness. The differences in dMPAB and dCVQ between 
sites were evident (Fig. 3). Using the rapid assessment 
combination of KN50-RE10-RTrw as an example, 
Fushan consistently produced the largest negative 
dMPAB compared to the other sites across sampling 
intensity (-2.2% to -5.9%; Fig. 3A). For dCVQ, it was 
Danum that produced the largest negative dCVQ for most 
of the sampling intensities (-7.6% to -25.7%; Fig. 3B); 
however, it was still Fushan that consistently produced a 
large negative dCVQ across sampling intensity (-2.6% to 
-7.1%; Fig. 3B). On the contrary, Pasoh produced a small 
positive dMPAB (0.36% to 0.60%; Fig. 3A) and dCVQ 
(0.31% to 0.59%; Fig. 3B). This suggested that 
information from rapid assessment had little impact on 
accuracy and consistency compared to the baseline for 
Pasoh. Nevertheless, most sites saw improved accuracy 
and consistency in mapping species richness by taking 
advantage of the information from rapid assessment.  

The three-way ANOVA analysis consistently 
indicated an insignificant marginal effect of knowledge 
level (KN) on dMPAB and dCVQ across sampling 
intensity (p > 0.1; Fig. 2). The basis of comparison was 
the rapid assessment combination of KN50-RE10-RTrw. 
Results showed that increasing knowledge level from 
50% (KN50) to 75% (KN75) only reduced marginal 
dMPAB and dCVQ by about 0.03% (Tables 2 and 3). 
Moreover, marginal dMPAB and dCVQ were only 
reduced by about 0.06% with full knowledge of species 
(KN100; Tables 2 and 3). In short, knowing more species 
of a forest in a rapid assessment did not necessarily 
contribute to improving accuracy and consistency 
compared to the baseline model.  

Results indicated significant marginal effects of rapid 
assessment effort (RE) and rapid assessment type (RT) on 
dMPAB and dCVQ consistently across sampling 
intensity (p < 0.001; Fig. 2). For example, at 5% sampling 
intensity, increasing RE from 10 (RE10) to 20 (RE20) 
individuals reduced marginal dMPAB and dCVQ by 
0.41% and 0.55%, respectively (Tables 2 and 3). On the 
other hand, increasing RE from 10 (RE10) to 40 (RE40) 
individuals doubled the reduction in marginal dMPAB 
and dCVQ, i.e., by 0.91% and 1.17%, respectively 
(Tables 2 and 3). These results suggested that increasing 
the number of individuals for rapid assessment in a cell 
significantly improved accuracy and consistency in 
mapping species richness compared to the baseline model. 
On the contrary, applying the transect (RTtr) in rapid 
assessment significantly increased dMPAB and dCVQ 
compared to the random walk (RTrw) with the exception  

100%i i iCVQ SDQ MQ 

1

M

i imm
MQ Q M




   2

1
1

M

i im im
SDQ Q MQ M


  

, ,i i rapid i baselinedMPAB MPAB MPAB 

, ,i i rapid i baselinedCVQ CVQ CVQ 

      
Y site KN RE RT

KN RE KN RT RE RT KN RE RT

    

        
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Table 2. Estimated parameters of the fitted linear model for the effects of knowledge level (KN), rapid assessment effort (RS), and 
rapid assessment type (RT) on mean percent absolute bias (MPAB). Values in bold red indicates significant parameter estimates (p ≤ 
0.05). The results are for 5% to 40% sampling intensity. 
 

Parameter 
Sampling Intensity 

5% 10% 15% 20% 25% 30% 40% 
Intercept -0.5628 -1.1758 -1.0777 -0.8186 -0.9639 -1.2457 -1.8366 
BCI 0.6374 1.0536 0.8992 0.6941 0.6691 0.9573 1.6344 
Danum 0.6374 1.0536 0.3488 0.6941 -0.2251 -0.3753 -0.4840 
Fushan -1.6378 -2.6803 -2.7740 -3.9128 -3.9246 -4.0120 -4.0994 
Pasoh 0.9652 1.6238 1.4333 1.4195 1.3390 1.6613 2.3403 
SCBI -1.2783 -1.8817 -1.6753 -2.5293 -2.4315 -2.3930 -2.5690 
Sinharaja 0.2910 0.4249 0.2655 -0.0088 -0.1048 0.1443 0.6610 
Wanang 0.8574 1.3402 0.2655 0.9822 -0.1048 0.1443 1.6229 
Wind River -0.3267 -0.7217 -0.7424 -1.8265 -1.6545 -1.8973 -1.8803 
KN75 -0.0301 -0.0117 -0.0008 -0.0420 0.0154 -0.0265 0.0144 
KN100 -0.0604 0.0017 -0.0542 -0.0581 0.0175 0.0289 0.1166 
RE20 -0.4096 -0.5734 -0.5824 -0.7592 -0.6063 -0.8227 -1.0377 
RE40 -0.9102 -1.2141 -1.0985 -1.5624 -1.3743 -1.6845 -2.2103 
RTtr 0.0188 0.1593 0.1653 0.1415 0.2580 0.3129 0.4773 
KN75-RE20 0.0043 -0.0442 0.0029 0.0114 -0.0840 0.0623 -0.0210 
KN100-RE20 0.0218 -0.0019 0.0528 0.0132 -0.0539 0.0067 -0.0921 
KN75-RE40 0.0518 -0.0297 0.0023 0.0022 -0.0860 -0.0376 -0.1729 
KN100-RE40 0.0267 0.0343 0.0379 -0.0211 -0.1473 -0.1591 -0.2104 
KN75-RTtr 0.0451 0.0057 -0.0630 0.0483 -0.0216 0.0563 -0.0378 
KN100-RTtr 0.0427 -0.0396 0.0356 0.0679 0.0220 0.0017 -0.1265 
RE20-RTtr 0.0690 0.0628 0.0343 0.1251 -0.0582 0.0639 -0.0872 
RE40-RTtr 0.0705 0.0534 0.0233 0.1165 0.0328 0.0392 0.0027 
KN75-RE20-RTtr -0.0243 0.0181 0.0538 0.0256 0.1783 -0.0970 0.0553 
KN100-RE20-RTtr 0.0088 0.0145 -0.0524 -0.0308 0.0976 -0.0321 0.1535 
KN75-RE40-RTtr -0.0519 0.0052 0.0611 -0.0280 0.0520 -0.0569 -0.0639 
KN100-RE40-RTtr -0.0424 0.0153 -0.0055 0.0031 0.0424 0.0506 0.0446 

 
Table 3. Estimated parameters of the fitted linear model for the effects of knowledge level (KN), rapid assessment effort (RS), and 
rapid assessment type (RT) on coefficient of variation of relative accuracy (CVQ). Values in bold red indicates significant parameter 
estimates (p ≤ 0.05). The results are for 5% to 40% sampling intensity. 
 

Parameter 
Sampling Intensity 

5% 10% 15% 20% 25% 30% 40% 
Intercept -1.5459 -3.2298 -2.8663 -3.5512 -3.8248 -4.7502 -6.0848 
BCI 1.6998 3.1772 2.8160 3.4908 3.3359 4.1645 5.7551 
Danum 1.6998 3.1772 -4.7549 3.4908 -9.3254 -13.6986 -19.6180 
Fushan -1.0457 -1.1314 -1.3995 -1.7994 -1.7579 -1.4961 -1.0015 
Pasoh 2.0721 3.8159 3.3959 4.3476 4.1318 5.0326 6.6485 
SCBI -0.2257 0.3421 0.6675 0.9586 1.0140 1.6363 2.0834 
Sinharaja 1.3335 2.5411 2.1316 2.6945 2.4760 3.1829 4.5185 
Wanang 1.7846 3.0065 2.1316 3.1262 2.4760 3.1829 4.8540 
Wind River 0.1500 0.5786 0.6498 -0.0982 0.0596 0.0491 0.1709 
KN75 -0.0333 0.0407 0.0548 -0.0591 0.2632 0.1492 0.2526 
KN100 -0.0564 -0.0363 -0.1458 -0.0331 0.1437 0.2682 0.3252 
RE20 -0.5504 -0.8297 -0.8543 -1.0752 -0.7667 -1.0830 -1.3216 
RE40 -1.1749 -1.4972 -1.4665 -2.0052 -1.5000 -1.6503 -2.8021 
RTtr 0.0410 0.2022 0.2702 0.1899 0.3796 0.5427 0.8324 
KN75-RE20 -0.0015 -0.0566 -0.1923 0.0303 -0.2616 0.0261 -0.3261 
KN100-RE20 0.0098 0.1089 0.1994 0.0236 -0.1002 0.0444 -0.2236 
KN75-RE40 0.0301 -0.1344 -0.0538 0.0795 -0.2818 -0.1657 -0.4635 
KN100-RE40 0.0022 0.0192 0.1641 -0.0324 -0.2676 -0.4573 -0.1590 
KN75-RTtr 0.0207 -0.0167 -0.2332 -0.0195 -0.0244 0.1345 -0.0786 
KN100-RTtr 0.0319 -0.0256 0.0077 0.0455 0.0265 -0.0283 -0.4080 
RE20-RTtr 0.0931 0.0814 0.0069 0.1721 -0.0621 -0.0117 -0.4696 
RE40-RTtr 0.0607 0.0541 0.0066 0.1176 -0.0142 -0.0966 -0.0365 
KN75-RE20-RTtr -0.0025 0.0548 0.2620 0.0756 0.2717 -0.1002 0.5865 
KN100-RE20-RTtr -0.0236 -0.0150 0.0195 -0.0027 0.0794 -0.0352 0.8220 
KN75-RE40-RTtr 0.0005 0.0300 0.1981 0.0695 0.1412 -0.1420 -0.0769 
KN100-RE40-RTtr -0.0067 0.0140 -0.0619 0.0617 0.0828 0.1972 0.0807 
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Fig. 2. Three-way Analysis of Variance (ANOVA) for A. mean percent absolute bias (MPAB) and B. coefficient of variation in relative 
accuracy (CVQ). Significance of sources of variation is presented across the seven sampling intensities. The factors are sites (site), 
knowledge level (KN), rapid assessment effort (RE), and rapid assessment type (RT). Significance is expressed as color coded p-
values. 
 

 
 

Fig. 3. Difference in A. mean percent absolute bias (dMPAB) and B. coefficient of variation in relative accuracy (dCVQ). The dMPAB 
and dCVQ are calculated between the rapid assessment combination KN50-RE10-RTrw and the baseline across the seven sampling 
intensities and the nine sites. The combination KN50-RE10-RTrw is rapid assessment with 50% knowledge level, 10 plant individuals, 
and random walk. 
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of 5% sampling intensity (Tables 2 and 3). For example, 
at 10% sampling intensity, applying RTtr would increase 
dMPAB and dCVQ by 0.16% and 0.20%, respectively 
(Tables 2 and 3). This suggested that laying out transect 
to select individuals in a cell during rapid assessment was 
less accurate and consistent in mapping species richness 
than randomly select individuals. 

The three-way ANOVA analysis mostly suggested 
insignificant effects of two- and three-way interactions on 
dMPAB and dCVQ across sampling intensity (p > 0.1; 
Fig. 2). An exception was the RE × RT interaction at 20% 
sampling intensity, which was significant for both 
dMPAB and dCVQ (p = 0.005; Fig. 2). Another 
exception was the KN × RE interaction at 20% and 10% 
sampling intensity for dMPAB and dCVQ, respectively, 
but with only suggestive evidence of significance (p = 
0.01 – 0.05; Fig. 2). The results in general suggested that 
the rapid assessment factors did not significantly interact 
with each other to influence accuracy and consistency in 
mapping species richness compared to the baseline model. 

Increasing sampling intensity generally decreased 
dMPAB and dCVQ across different rapid assessment 
combinations (Fig. 4 and 5). For dMPAB, the rate of 
decrease appeared to be greater when sampling intensity 
increased from 5% to 10% but became more gradual from 
10% to 40% sampling intensity. The trend in the rate of 
decrease was particularly evident for the rapid assessment 
combinations with RE10 (Fig. 4). For dCVQ, the rate of 
decrease across sampling intensity appeared to be similar 
between the rapid assessment combinations (Fig. 5). 
Despite the observed consistent trends in dMPAB and 
dCVQ, there were some exceptions. For example, dMPAB 
was higher than expected for 15% or 20% sampling 
intensity depending on the rapid assessment combinations 
(Fig. 4), while dCVQ was higher than expected at 20% 
sampling intensity for all the rapid assessment 
combinations (Fig. 5). As seen in Tables 2 and 3, increasing 
RE from 10 to 40 individuals decreased dMPAB and 
dCVQ. For dMPAB, the trends over sampling intensity 
were not parallel suggesting that the amount of decrease 
became larger at higher sampling intensity (Fig. 4). On the 
other hand, the parallel trends in dCVQ over sampling 
intensity suggested that the amount of decrease was 
consistent (Fig. 5). The parallel trends in dMPAB and 
dCVQ between RTrw and RTtr combinations suggested 
that RTtr was consistently less accurate and consistent than 
RTrw across sampling intensity (Fig. 4 and 5). In short, 
increasing sampling intensity improved accuracy and 
consistency in mapping species richness. 

 

DISCUSSION 
 
Remote sensing has contributed tremendously to 

mapping plant diversity for the past decades (Rocchini et 
al., 2010). However, other alternative methodology to 
assist mapping could be explored. As such, this study 

aims to explore how information from a rapid assessment 
by a local community or an expert could be used to locally 
map spatial distribution of species richness and to assess 
the methodology accuracy and consistency. Primary 
results suggest that simulated knowledge level of a 
community did not improve the accuracy and consistency 
in mapping species richness. On the other hand, both 
rapid assessment efforts and methods influenced the 
accuracy and consistency. Increasing rapid assessment 
efforts have shown to improve the accuracy and 
consistency. Using transect in rapid assessment is less 
accurate and consistent than the method of randomly 
selecting individuals in cells (random walk) for rapid 
assessment. 

The proposed method of using information from a 
rapid assessment to map species richness is expected to 
perform equally well across all sites, but the results 
suggest otherwise. Some sites such as Fushan and Danum 
are more accurate and consistent than other sites such as 
Pasoh. We speculate the reason to be the underlying 
heterogeneity in the spatial distribution of species 
richness in a site (Fig. 6). For example, for Pasoh, 
majority of the cells are very similar in relative species 
richness, or in other words, the number of species is 
relatively homogeneous across cells (Fig. 6B). On the 
other hand, for sites such as Fushan and Danum, cells are 
highly variable in relative species richness (a range from 
light yellow to dark red; Fig. 6C and 6G), which implies 
that the number of species is highly heterogeneous across 
cells. Furthermore, there are aggregation of cells with low 
or high relative species richness. For example, there is a 
pocket of cells with low relative species richness at the 
lower right section in Danum (Fig. 6C). For Fushan, there 
is a large pocket of cells with high relative species 
richness diagonally across the site, which is surrounded 
by cells of low relative richness (Fig. 6G). Hence, we 
reason that for a homogenous site, information gain from 
a rapid assessment is very little, and information from 
census is sufficient to map species richness accurately 
and consistently. On the contrary, when species richness 
displays spatial clusters, rapid assessment contributes 
significantly to mapping the distribution. Hence, if prior 
knowledge of how species richness distributes spatially, 
it would be useful to designing a rapid assessment, but it 
is seldom known in advance. However, remote sensing 
could potentially be used to generate this prior knowledge 
with highly correlated proxies (Hernández-Stefanoni and 
Ponce-Hernandez, 2004).  

The ability to identify a plant species should 
theoretically affect amount of information gained during 
a rapid assessment because unknown individuals do not 
contribute to the analysis. We expect that knowing 50% 
of the species in a forest should produce less accurate and 
consistent mapping compared to 100% knowledge. 
However, results contradict our expectation with 
knowledge level having minimum effect. Hence, full
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Fig. 4. Difference in mean percent absolute bias (dMPAB). The dMPAB is calculated between rapid assessment combinations and the 
baseline across sampling intensity averaged across the nine sites. 
 

 
 

Fig. 5. Difference in coefficient of variation in relative accuracy (dCVQ). The dCVQ is calculated between rapid assessment 
combinations and the baseline across sampling intensity averaged across the nine sites. 
 
knowledge is not a necessary requirement for a rapid 
assessment. Our study suggests at least knowing 50% of 
the locally abundant species. A possible explanation for 
the insignificant effect of knowledge level is that cells 
mostly consist of locally abundant plant species. Rare 
species with very few individuals are more sparsely 
distributed. These rare species might not be picked up 
during rapid assessment because only a small fraction of 
plant individuals is selected for the assessment. Thus, it is 

more likely to select species that have moderate to high 
number of individuals in a forest, which coincides with 
the simulated knowledge levels in this study. In short, 
plant individuals selected for rapid assessment are more 
likely known to the survey crew because of abundance. 
Nonetheless, caution should be exercised with the 
interpretation of the results and suggestions. It is possible 
that some degree of correlation between knowledge levels 
and rapid assessment efforts exist because unidentified
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Fig. 6. Heat maps depicting spatial distribution of cell relative true species richness. The sites are: A. Amacayacu, B. Pasoh, C. Danum, 
D. Wanang, E. BCI, F. Sinharaja, G. Fushan, H. SCBI, and I. Wind River. Cell true species richness is defined as the total number of 
species found in a cell. Relative true species richness is the ratio of cell true species richness: maximum cell true species richness. 
Maximum cell true species richness of each site is given in parentheses. 
 
individuals are dropped from modeling. The moderate to 
suggestive significance of KN × RE interaction may point 
towards this correlation. Thus, the significant effects of 
rapid assessment effort may have masked potential 
effects of knowledge level. 

Nonetheless, the results on knowledge level support 

engaging a local community in rapid assessment, who 
usually has only partial knowledge of the species in their 
forests. Traditional or local knowledge has contributed to 
conservation effort. For example, Wilder et al. (2016) 
showed that cooperation of local communities and 
biologists facilitated development of a biodiversity 
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inventory network to improve species recovery. 
Hernández-Stefanoni et al. (2006) found that indigenous 
Mayan knowledge was comparable to satellite imaging in 
assessing species diversity of a Mexican tropical forest. 
However, there are challenges related to the 
nomenclature used in a rapid assessment. For example, a 
species could have multiple names or multiple species 
could be assigned a single name (Lam and Kleinn, 2008). 
A possible solution is to first survey local knowledge and 
species identify before the start of a rapid assessment 
(Khasbagan and Soyolt, 2008). 

Accuracy and consistency in mapping species 
richness are mainly driven by rapid assessment effort and 
type. In general, a large number of rapidly assessed 
individuals with the random walk method leads to more 
accurate and consistent mapping. The observed results 
with the rapid assessment effort agree with the commonly 
observed species-individual relationship. The 
relationship shows that the number of observed species 
increases with the number of sampled individuals up to a 
certain degree (Condit et al., 1996). With more rapidly 
assessed individuals, true cell species richness is better 
captured. If a cell is inherently species rich, rapid species 
richness would be high, and vice versa. As a result, model 
prediction is more accurate and consistent. However, 
higher number of rapidly assessed individuals means 
higher cost and longer field time. Thus, a balance between 
accuracy and consistency and cost should be further 
studied. Our study suggests at least 20 individuals in a 
rapid assessment to gain at least some level of 
improvement over accuracy and consistency.  

Better performance of the random walk (RTrw) than 
the transect (RTtr) could be explained by the former 
reducing spatial autocorrelation between sampled 
individuals. Some plant species are likely to exhibit local 
aggregation due to factors such as dispersal limitation 
(Seidler and Plotkin, 2006) and microclimates (Fayolle et 
al., 2012). It is likely that RTrw reduces the chance of 
sampling individuals from the same species, which in turn 
better reflects underlying species richness in a cell. In two 
separate studies looking at various plot designs, Yang et 
al. (2019) and Quon et al. (2020) found that when plots 
that were in close proximity were more similar in species 
composition, which reduced information gain on species 
diversity. A possible explanation for the 
underperformance of RTtr could be the small cell size (20 
× 20 m) that results in aggregating individuals from the 
same species. Increasing cell size would lead to more 
diverse species composition, a well-known species-area 
relationship (Condit et al., 1996), which in turn could 
improve performances of RTtr. From a practical 
perspective, it would be difficult to implement RTrw 
because one would theoretically need to label every 
individual in a cell for a pure random selection. RTtr is 
easily implemented and has been widely carried out for 
sampling biodiversity such as the assessment of vascular 

plant diversity in Switzerland (Wohlgemuth et al., 2008). 
Thus, this study recommends RTtr despite it being less 
accurate and consistent. Nonetheless, simulating RTrw 
allows us to quantify the relative performances between 
the two methods.  

A major cost of our proposed method comes from the 
census. Hence, the choice of a sampling intensity of 
census cells will directly impact the feasibility of a plant 
diversity assessment program. As expected, results 
suggest that increasing sampling intensity improves 
accuracy and consistency, but this will advertently 
increase the cost. The rate of decrease in accuracy and 
consistency over sampling intensity suggests that a 
sampling intensity between 5% and 10%. This is because 
improvement in the accuracy and consistency becomes 
more gradual at a higher sampling intensity, especially 
the former. However, it should be noted that this 
suggestion is observational. A more formal approach of 
studying the trade-off between cost, accuracy, and 
consistency is with a detail cost-plus-loss analysis (Lynch, 
2017; Yang et al., 2017). Better understanding of the 
trade-offs will help with designing rapid assessment and 
census activities. So far, this type of analysis has not been 
carried out in the context of diversity assessment. 

A major limitation of our proposed method is spatial 
coverage. Mapping distribution of species richness with 
field rapid assessment could not match geographical 
coverage from remote sensing. However, it is possible to 
integrate remote sensing and our method in a hierarchical 
structure. For example, at the landscape-level, remote 
sensing is used to develop wall-to-wall proxies such as 
the ones mentioned earlier (Coops et al., 2019; Pau et al., 
2012). The wall-to-wall coverage is then delineated into 
polygons of roughly homogenous values. Some of these 
polygons or local sites are then selected with a probability 
design for field rapid assessment and census as described 
in our method. Multilevel relationships between the wall-
to-wall remote sensing proxies, the rapid assessment 
metrics, and the census information are modeled. The 
fitted models are used to predict species richness 
distribution across a larger geographical region. This 
hierarchical sampling strategy would resolve the 
limitation of our proposed method, and it could be studied 
in the future for its efficiency. 

 

CONCLUSIONS 
 

Conserving plant diversity is an integral part of 
sustainable forestry. Spatial distribution of species 
richness is used for management decision making such as 
designating conservation areas. This study develops a 
strategy of using rapid assessment to generate a complete 
coverage of proxies for the underlying species richness in 
a local forest. Census is carried out and linked to the rapid 
assessment proxies. An ANN model is built to predict the 
underlying distribution of species richness of the area. 
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Results show that information from a rapid assessment 
improves accuracy and consistency in mapping species 
richness distribution. This presents an opportunity to 
engage local communities in a rapid assessment with the 
assistance of an expert. There may be opportunities to 
adapt our methods to other vegetation groups such as 
herbs, epiphytes, and lianas, but there are foreseeable 
challenges such as quantifying the number of individuals. 
Furthermore, it is necessary to test our methods in the 
field in a future study to identify any practical issues. In 
conclusion, our study aims to diversify tools and to 
engage in multi-stakeholder solutions crucial to 
sustainable forest management because management 
objectives are increasingly diverse and complex to meet 
societal demands. 
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