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ABSTRACT: Mangroves are unique coastal ecosystems that are rich in biodiversity and have significant ecological value. 
Identifying mangrove species is important for many applications, such as biodiversity, restoration, and monitoring. As traditional 
methods are complicated and time-consuming, non-experts need an approach to identify mangroves in a timely and cost-effective 
manner. In this study, we created a deep learning approach for mangrove species identification based on leaf image recognition. We 
used digital images of mangrove leaves to identify mangrove species by applying Convolutional Neural Networks (CNN). A dataset 
of leaf images from 11 ‘true’ mangrove species found in Bali, Indonesia, was developed and divided into 80% for training and 20% 
for test datasets. About 20% of the training dataset was used for validation. Our results showed an accuracy of 98.86% on validation 
and 97.16% on a test set of images, promising possibilities for mangrove species identification. The finding indicates that the model 
effectively identifies mangrove species that are high in diversity and have morphological similarities. 
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INTRODUCTION 

 
Nowadays, plant identification has been advanced by 

incorporating artificial intelligence into plant 
identification technology (Asnur et al., 2023). For 
mangrove ecosystems, this application is essential not 
only for biodiversity purposes but also for mangrove 
management and restoration. Mangrove ecosystems, 
found in tropical and subtropical coastlines worldwide, 
play a pivotal role in coastal protection, fishery resources, 
biodiversity, and livelihood (Barbier et al., 2011). 
Mangroves comprise a diverse group of plants, which can 
be classified into three groups: major mangrove species, 
minor mangrove species and mangrove associates 
(Tomlinson, 1994). The biodiversity of mangroves is 
considered relatively low compared with terrestrial plants, 
as several studies claimed that the number of mangrove 
species ranges from 65 species (Kathiresan and Bingham, 
2001) to 70 species (Polidoro et al., 2010); however, their 
distinct distributional ranges in association with local 
conditions create morphological specialisation that leads 
to complexity of the ecosystem (Duke et al, 1998, Lugo 
1974). The major mangrove species, so called ‘true’ 
mangroves, are found restricted in intertidal zones and 
well known for their morphological and physical 
adaptations with harsh environments, characterised by 
high salinity and tidal inundation (Kathiresan and 
Bingham, 2001). Other vegetation, defined as mangrove 
associates, can resemble ‘true’ mangroves but not 

exclusively inhabit the intertidal zones (Lugo and 
Snedaker, 1974).  

The unique characteristics of mangroves create 
diverse morphology of this kind of plant that needs to be 
identified using traditional keys. The identification of 
mangrove species can rely on the examination of fruit and 
flower morphology (Kamruzzaman et al., 2019), but 
these components are only accessible at specific periods 
due to their seasonal pattern. Therefore, the leaf is most 
likely the primary option for mangrove identification due 
to its easy accessibility and availability at all times, and it 
can be utilised for specific identification based on distinct 
leaf features, such as shape, texture, size, colour, and 
other specific properties (Lucena et al., 2011; Nascimento 
et al., 2021). However, distinguishing visual differences in 
leaf characteristics between different species of mangroves 
may prove challenging for individuals lacking experience 
in this field (Dissanayake and Kumara, 2021; Viodor et al., 
2022). In addition to morphological diversity among 
mangrove species, hybridisation between species can also 
result in taxonomy problems, such as difficulty in 
identification (Kathiresan and Bingham, 2001).  

While identifying mangrove species with traditional 
methods might be difficult for non-experts, a deep-
learning approach can provide excellent performance 
identification derived from expert knowledge (Alias et al., 
2020; Azad et al., 2020). To date, the morphological 
attributes of plant leaves have been utilised as a promising 
dataset for the development of deep learning algorithms
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Table 1. ‘True’ mangrove species used in this study and the 
number of samples (images) per species in the dataset. 
 

Family /Species 
Number of Sample Dataset 
Real Augmented 

Acanthaceae   
Avicennia alba  500 1000 
Avicennia marina  500 1000 
Avicennia officinalis 500 1000 
Combretaceae   
Lumnitzera recemosa  500 1000 
Lythraceae   
Sonneratia alba  500 1000 
Meliaceae   
Xylocarpus granatum  500 1000 
Rhizophoraceae   
Bruguiera gymnorrhiza  500 1000 
Ceriops decandra  500 1000 
Rhizophora mucronata  500 1000 
Rhizophora apiculata 500 1000 
Rhizophora stylosa  500 1000 

Total 5500 11000 

 
in the identification of multiple species. Wan et al. (2019) 
proposed a compact patch-based Convolutional Neural 
Network (CNN) on GoogleLeNet structure to exploit the 
benefits of CNN in feature analysis on six mangrove 
species. This approach aimed to address the limitation of 
fixed and huge input sizes that restricted the use of CNNs 
in fringe mangrove forests. This method significantly 
decreased the role of down-sampling technology to create 
a more complex network with smaller input. Their model 
demonstrated superior classification accuracy at 98.8%. 
Another work on mangrove identification was conducted 
by Asnur et al. (2023) using a CNN structure to 
accurately classify four mangrove species. The model's 
architecture consisted of a batch size of 32, input images 
of size 128x128 pixels, four classes, four convolution 
layers, four rectified linear unit (ReLU) layers, 2x2 max-
pooling, and two fully connected layers (FCL), giving the 
test with an accuracy rate of 97.50%. Inspired by 
technological advancements, Viodor et al. (2022) 
explored deep neural network-based deep learning 
applications for plant identification intended for handheld 
devices using a dataset of five mangrove species. The 
study also carried out experimental validation using deep 
learning and the suggested cutting-edge architecture. 
Their findings demonstrated the practicality of utilising 
MobileNetV3Small for mangrove species identification, 
with an accuracy of up to 97.07%. Another study by 
Viodor et al (2023) used a balanced dataset consisting of 
5000 images from five mangrove species and 
demonstrated a model accuracy of up to 98.4%. Using a 
smartphone, this study integrated the trained model into a 
mobile application that can capture and identify the 
mangrove species through leaf images. 

This paper aims to provide an understanding of the 
approach of mangrove identification using CNN, 

focusing on transfer learning on a dataset of leaf images 
of 11 ‘true’ mangrove species from 5 different mangrove 
families. In the present study, mangrove leaves were 
utilised as the primary database object for performing 
training on object recognition. The dataset was conducted 
on the training model based on the confusion matrix and 
classification report. This model, namely e-mangrove 
model, will be incorporated into MonMang application, a 
mangrove monitoring tool for optimising field activities, 
including research surveys and monitoring of mangrove 
rehabilitation/restoration. 

 

MATERIALS AND METHODS 
 
Dataset Collection 

The dataset was built for mangrove leaves of 11 ‘true’ 
mangrove species that were collected in December 2023 
from mangrove forests in Jembrana, Bali, Indonesia 
(Table 1), where a preliminary study of mangrove 
biodiversity has been carried out since 2010. Using 
information from the area we are familiar with, we aimed 
to build a knowledge base for the creation of mangrove 
databases in Indonesia.  

Given the complexity of mangrove tree structure and 
radically different heights within species, the height of the 
canopy at which we collected the leaves was not taken 
into account (Camargo Maia & Coutinho, 2012). Due to 
time constraints, only one or two individuals from each 
species were collected, and they were promptly 
photographed to prevent colour fading. 

A white background was used to photograph the 
leaves image on both the upper and lower sides, with 250 
leaves per species. In order to improve the image 
composition, the image was taken in balanced format 
with a 1x1 ratio on an Android smartphone with the 
resolution of 2992x2992 pixels (Figure 1). This is a 
default resolution of image captured from the smartphone 
that will retain detailed features, allowing flexibility in 
preprocessing and potential future analyses that may 
require finer details or different input sizes. Image 
preparation was carried out on the dataset before model 
training in data processing.  

We started by setting up a dataset and renaming it 
with "lab-image sequence". All images were resized to 
600×600 pixels using Microsoft Picture Manager in order 
to encounter challenges in running the model. The dataset 
was split into three sections: training, validation, and 
testing set. From a total dataset of 5500 images, the 
training dataset made up 80% of the dataset, which 
contained 4400 total images then 20% of the training 
dataset (880 images) were designated as validation 
datasets, which were used to adjust hyperparameters and 
track the model's performance during training. The testing 
dataset comprised 20% of the dataset (1100 images) 
toevaluate the final performance of the trained model 
(Sidik et al., 2023). In this work, we employed a balanced 
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Fig. 1. Leaf images of eleven ‘true’ mangrove species used white background (upper and lower side): Avicennia alba (Aa), Avicennia 
marina (Am), Avicennia officinalis (Ao), Bruguiera gymnorrhiza (Bg), Ceriops decandra (Cd), Lumnitzera racemosa (Lr), Rhizophora 
mucronata (Rm), Rhizophora apiculata (Ra), Rhizophora stylosa (Rs), Sonneratia alba (Sa), and Xylocarpus granatum (Xg)  
 
dataset, which provides an equal number of images for 
each class. In many applications, using a balanced dataset 
for deep learning training is the preferable method since it 
can enhance generalisation, boost model performance, and 
yield more precise assessment metrics (Bengar et al., 2022). 

Each dataset was numbered and stored in a different 
folder to ensure that no imaging faults appeared twice in 
the training or testing datasets. To evaluate the model's 
generalisability and robustness, we trained the model on 
an augmented dataset of 11000 images, of which 80% 
(8800 images) were used for training, and 20% of the 
training dataset (1760 images) were used for validation. 
The remaining 20% (2200 images) were used for testing.  
 
Network Architecture 

In this study, we explored MobileNetV2, a 
Convolutional Neural Network (CNN), as a deep-
learning model for identifying mangrove species. 
MobileNetV2 is a compact neural network structure 
created for effective processing on mobile gadgets 
(Michele et al., 2019). This CNN offers efficient power 
consumption and computational capabilities, making it 
suitable for low-cost and compact mobile phone models 
(Howard et al., 2017) by drastically reducing the amount 
of memory and processes required while maintaining the 
same level of accuracy (Sandler et al., 2018). The 
technique divides ordinary convolution operations into 
two separate stages: depthwise convolution and pointwise 
convolution (Lu et al., 2022; Tu et al., 2020). A 
depthwise separable convolution is utilised to decrease 
the quantity of parameters and computational workload, 
enhancing efficiency in terms of both size and speed. 
Therefore, MobileNetV2 applies depthwise separable 
convolution and a bottleneck block architecture to attain 
high efficiency. MobileNetV2 utilises ReLU as an 
activation function to bring non-linearity into the model, 
enabling it to learn intricate patterns.  

MobileNetV2 is frequently trained and run in Google 
Colab, which is a resourceful tool for creating and 
training deep learning models (Carneiro et al., 2018). 
Google Colab is often used for image recognition and 
classification projects due to its efficiency in terms of 
model size and computational efficiency, as well as the 
fact that it offers free access to a powerful GPU or TPU 
(Praveen Gujjar et al., 2021). Users can use MobileNetV2 
in Google Colab to effectively manage picture 
recognition tasks without straining computing resources 
(Xie et al., 2022).  

CNN architecture utilised in this study for the Deep 
Neural Network, together with transfer learning, is shown 
in Figure 2. Transfer learning was implemented by using 
a MobileNet-based model as the basis model, where the 
classification layer was removed and initialised with 
ImageNet weights. We improved it with the addition of 
Conv2D, MaxPooling2D, Flatten, Dense, Rescaling, 
RandomFlip, RandomZoom, and RandomRotation layers 
for a specific use case or dataset. The output was passed 
to the batch normalisation layer, which normalised the 
input for the following layer and enhanced network speed 
and convergence. Subsequently, we implemented the 
Rectified Linear Unit (ReLU) activation function in 
MobileNetV2 with the formula as follows: 

𝑅𝑒𝐿𝑢(𝑥) = max(0, 𝑥) 
where (x) represents the input from the specific 

neuron or layer. A dropout layer was included to mitigate 
overfitting and enhance the model's generalisation 
capabilities (Wani et al., 2020). 
 
Environment and setting 

The model's data processing and training were set in 
the Jupyter Notebook and the Google Colab environment. 
Utilising a Precision 3470 machine with a 12th generation 
Intel® Corei5-1250P that was primarily utilised during 
the research for pre-processing the dataset, including
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Fig. 2. MobileNetV2 architecture. 
 
Table 2. e-mangrove model parameters for large model and small model. 
 

No Layer Type 
Large Model Small Model 

Output Shape Parameter Output Shape Parameter 
1 random_flip (RandomFlip)  200, 200, 3 0 200, 200, 3 0 
2 random_zoom (RandomZoom) 200, 200, 3 0 200, 200, 3 0 
3 random_rotation (RandomRotation)                200, 200, 3 0 200, 200, 3 0 
4 rescaling_1 (Rescaling) 200, 200, 3 0 200, 200, 3 0 
5 conv2d (Conv2D) 200, 200,16 448 200, 200,8 224 
6 max_pooling2d (MaxPooling2D) 100, 100, 16 0 100, 100, 8 0 
7 conv2d_1 (Conv2D) 100, 100, 32 4640 100, 100, 16 1168 
8 max_pooling2d_1 (MaxPooling 2D) 50, 50, 32 0 50, 50, 16 0 
9 conv2d_2 (Conv2D) 50, 50, 64 18496 50, 50, 32 4640 
10 max_pooling2d_2(MaxPooling2D) 25, 25, 64 0 25, 25, 32 0 
11 dropout (Dropout)  25, 25, 64 0 25, 25, 32 0 
12 flatten (Flatten) 40000 0 20000 0 
13  dense (Dense) 128 5120128 128 1280064 
14  dense_1 (Dense) 13 1677 13 845 

 Total Parameters 5145389 (19.63 MB) 1286941 (4.91MB) 
 Trainable parameters 5145389 (19.63MB) 1286941(4.91MB 
 Non-trainable parameters 0  0 

 
organising, cleaning, and augmenting image data. These 
tasks, though less computationally intensive than model 
training, require a reliable machine with sufficient 
processing power and memory to handle a large volume 
of high-resolution images efficiently. For deep learning 
training, the use of Google Colab was essential, as its 
powerful GPU resources were leveraged to significantly 
accelerate the model training process. This setup enabled 
the efficient handling of computationally intensive tasks, 
including the training of the model on large dataset and 
the fine-tuning performed using transfer learning.  

The model was trained using inputs resized to 
600x600 pixels, with a size of 19.63 MB for the large 
model and 4.91 MB for the small model. The training 
process then divided the data into three sets: a training set 
that contained 80% of the complete data, a validation set 

that contained 20% of the training set, and a testing set 
that had 20% of the entire data. The training dataset only 
includes single-leaf images from a carefully chosen 
collection of leaf shots. Before using MobileNetV2 to 
train the deep learning model, hyperparameters were 
specified to improve the model's performance on fresh 
data. Each model was configured to utilise input images 
with a 200x200 pixel resolution. After using the Adam 
optimiser to fine-tune the models to a batch size of 32, the 
models were assembled using the Categorical Cross-
Entropy loss function and made ready for training. As 
indicated in Table 2, we used these hyperparameters 
consistently in all testing to ensure a fair and comparable 
comparison of results. To guarantee accurate results and 
remove bias in both the training and validation phases, 
three-fold cross-validation was carried out. 
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Table 3. Comparison of e-mangrove large and small model based on their training performance. 
 

Small model 
Epoch  10 20 30 40 50 
Dataset  Real Augmented Real Augmented Real Augmented Real Augmented Real Augmented 
Accuracy 81.02 84.89 89.89 90.22 92.52 89.72 96.07 91.68 96.73 93.83 
ValAccuracy 88.30 83.69 84.89 91.70 90.80 93.92 96.14 93.07 98.64 95.51 
Precision 0.73 0.78 0.80 0.82 0.82 0.80 0.90 0.84 0.85 0.86 
Recall 0.72 0.76 0.77 0.82 0.78 0.79 0.90 0.84 0.85 0.84 
Average 
Time 
(s/epoch) 

56s 
402ms
/step 

84s 
303ms/step 

52s 
371ms/ 

step 

84s 
305ms/step 

51s 
371ms/ 

step 

111s 
404ms/step 

49s 
354ms/ 

step 

97s 
353ms/step 

49s 
352ms/

step 

107s 
388ms/step 

Large Model 
Epoch  10 20 30 40 50 
Dataset  Real Augmented Real Augmented Real Augmented Real Augmented Real Augmented 
Accuracy 85.98 85.16 92.89 94.35 92.75 95.50 96.07 96.99 97.16 96.49 
ValAccuracy 89.77 85.68 94.20 94.83 96.82 96.88 97.27 99.09 98.86 96.99 
Precision 0.76 0.88 0.59 0.84 0.84 0.87 0.88 0.92 0.90 0.87 
Recall 0.76 0.86 0.59 0.82 0.85 0.87 0.87 0.92 0.89 0.87 
Average 
Time 
(s/epoch) 

85s 
613ms
/step 

236s 
858ms/step 

132s 
951ms/ 

step 

144s 
523ms/step 

72s 
518ms/ 

step 

159s 
577ms/step 

105s 
756ms/ 

step 

151s 
549ms/step 

73s 
525ms/

step 

233s 
846ms/step 

 
Evaluation matrix 

We assessed the model's performance using a 
particular test set that included scores for accuracy, 
precision, and recall. Accuracy is the ratio of correct 
forecasts to total predictions. Precision evaluates the 
accuracy of positive predictions produced by the model. 
Recall is the proportion of true positives to the total 
number of genuine positive cases in the dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

True Positive (TP) is the count of instances accurately 
identified as positive by a model. Conversely, True 
Negative (TN) represents the occurrences accurately 
identified by a model as negative. False Positive (FP) is 
the count of occurrences where a model inaccurately 
predicts a positive outcome. False Negative (FN) occurs 
when a model wrongly forecasts instances as negative. 

 

RESULTS AND DISCUSSION 
 
Table 3 compares the training performance of 

multiple MobileNetV2 iterations, with particular 
emphasis on cross-validation outcomes, computation 
time, and epoch size prior to and during optimisation. The 
SM10, SM20, SM30, SM40, and SM50 models were 
small models in the sense of size and number of epochs. 
These models used less processing power and fewer 
iterations, yet they exhibited an ideal variance in 
validation accuracy. Compared to the large models 
(models LM10, LM20, LM30, LM40, and LM50), the 
small models were more portable and ideal for use on 
mobile devices for plant species identification.  

Our work yielded the greatest results as a preliminary 
e-mangrove model at 50 epochs of the large model on a 
real dataset, with 97.16% training accuracy and 98.86% 
validation accuracy. Our findings are consistent with a 
recent study conducted by Viodor et al., (2023), which 
involves creating a mobile application using the deep 
learning model MobileNetV3 for the identification of 
mangrove species. This program also included a feature 
for recording and analysing the variety of these species. 
In Viodor et al (2023), a dataset of 5,000 photos of five 
prevalent mangrove species in Clarin, Bohol was 
gathered, and a deep-learning model was developed 
utilising transfer learning techniques. The 
MobileNetV3Large model demonstrated a high accuracy 
rate of 98.4% when tested on a collection of photos, 
suggesting its proficiency in accurately identifying 
different mangrove species. The proficient model was 
incorporated into a mobile application capable of 
capturing and classifying mangrove leaves using a 
smartphone camera. The application's intuitive interface, 
live data recording, and cloud-based structure make it 
well-suited for extensive biodiversity monitoring and 
management, facilitating expedited and more effective 
data collecting and analysis (Atsumi et al., 2024; Urbano 
et al., 2024).  

The training and validation accuracy graphs for e-
mangrove models using real datasets are shown in Figure 
3, while the corresponding graphs for e-mangrove models 
utilising augmented datasets are shown in Figure 4. The 
figures show that, with a small variation in the other 
model, the large model has the highest accuracy. Due to 
its outstanding cross-validation performance, this model 
has the lowest loss.  

The classification performance of the model was 
evaluated using both the real and augmented datasets, 
with the results demonstrating varying levels of accuracy 
across species. In the real dataset (Figure 5a), the model 
achieved high confidence levels for species such as
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Fig. 3. Training and validation history for large and small models at epoch 10, epoch 20, epoch 30, epoch 40, and epoch 50 using real 
dataset 
 
Avicennia alba (100%) and Ceriops decandra (99.81%), 
while certain species, including Sonneratia alba (47.29%) 
and Rhizophora apiculata (61.30%), showed lower 
confidence. Similarly, in the augmented dataset (Figure 
5b), the model generally performed better, with high 
confidence scores for species of Bruguiera gymnorrhiza 
(99.98%) and Rhizophora stylosa (99.54%). However, 
some samples, such as Ceriops decandra (36.20%), 
remained challenging. 

Large numbers on the diagonal part of the confusion 
matrices (Figure 6 and Figure 7) indicated an accurate 
prediction for both training and validation datasets in the 
real data and forecasts produced by each model. In the 
testing dataset, the trained models accurately predicted 
the majority of the classes as well, however, 

misclassifications were still found. For instance, the 
model misclassified Xylocarpus granatum as Rhizophora 
mucronata and Sonneratia alba, Avicennia officinalis as 
Rhizophora apiculata and Bruguiera gymnorrhiza, and 
Ceriops decandra as Rhizophora stylosa. It implies that 
in return for greater model size and longer computing 
times, large models can provide greater accuracy than 
small models. However, more research is required to 
provide a higher-quality dataset that could increase 
classification accuracy. 

 

CONCLUSION 
 
In this study, we developed the e-mangrove model, a 

deep learning system for mangrove species identification, 
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Fig. 4. Training and validation history for large and small models at epoch 10, epoch 20, epoch 30, epoch 40, and epoch 50 using 
augmented dataset 
 
using deep convolutional neural networks. The model 
was trained on a balanced dataset of 5500 images 
representing 11 "true" mangrove species, achieving an 
accuracy of 97.16% on the test data. Additionally, we 
trained the model on an augmented dataset of 11000 
images—double the original size—to enhance its 
generalizability and robustness, resulting in an accuracy 
of 96.49 % on the test data. These findings suggest that 
the model could serve as an effective tool for agile 
mangrove identification. 
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Fig. 5. Classification results for the real dataset (A) & augmented dataset (B) using the large model trained for 50 epochs.. 
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Fig. 6. Confusion matrix for large model (Left), small model (Right) at epoch 50 for training data, validation data, and testing data 
using real dataset 
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Fig. 7. Confusion matrix for large model (Left), small model (Right) at epoch 50 for training data, validation data, testing data using 
augmented dataset 
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