TETRAD ANALYSIS
by

C. SHIELDS GOWANS!

INTRODUCTION

In a number of fungi, algae, Bryophytes, and some higher plants, it is possible
to isolate and genetically analyze the four cells resulting from a single meiosis.
The four meiotic products can be separated and grown into four gametophytes or
gones (the term gone is used to designated a clone derived from a single meiotic
product), or in the case of higher plants the pollen tetrads can be utilized to fertilize
standard female parents. In this way the genotype of the four products of a single
meiosis can be identified by suitable tests. This type of genetic analysis is called
tetrad analysis in contradistinction to single strand analysis. Single strand analysis
is typified by the familiar type of genetic studies done on Drosophila or maize, where
single meiotic products (sperm or pollen) are selected at random from many meioses
and analyzed for their genetic constitution by crossing to suitable tester strains.

A great deal more information about gene, chromosome, and chromatid behavior
during meiosis can be inferred from tetrad analysis than from single strand analysis.
One can obtain, for example, in a tetrad analysis a measurement of relative distance
(genetic map distance) between a gene and it's centromere. One can also obtain
an estimate of the frequency of double exchanges between two linked genes, whereas
in a single strand analysis one needs three linked genes to detect double cross-
overs. Tetrad analysis, furthermore, gives information as to which of the four
chromatid strands are involved in the exchange events, and therefore information
about the phenomenon of interference on the chromatid level.

Tetrads may be ordered (Newrospora, Seordaria) or unordered (yeast, Chlamydo-
monas). Although the techniques used to determine genetic map distance between
two linked genes are the same in ordered and unordered tetrads, the determination
of gene-centromere map distances is quite different in the two types of tetrads.
Although tetrads are generally unordered, textbooks on genetics generally consider
_only ordered tetrads. In the analysis of unordered tetrads there are often special
cases where the concepts of ordered tetrads are useful (see Lerche 1937, Mainx
1931, Starr 1954, Stein 1958).

Because of the above considerations, it seems wise to present the concepts .and
‘techniques of tetrad analysis to the general biologist who may be working with
organisms in which tetrad analyses can be performed. The purpose of this paper
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is to bring together the techniques of ordered and unordered tetrads into a useful .

summary.

ESTIMATED EXCHANGE FREQUENCIES

In the analysis of tetrads, we base our gene-gene and gene-centromere map
distances on estimated exchange frequencies. Exchange frequency is the frequency
of tetrads of meiotic products in which a chromatid exchange has occurred in the
gene-gene or gene-centromere region being investigated. It is, therefore:

number of tetrads with an exchange in the region
total number of tetrads

Or:

number of meioses in which an exchange has occurred in the region
total number of meioses

Exchange frequencies are commonly estimated for gene-centromere regions in
unordered tetrads, and for gene-gene regions in both ordered and unordered tetrads
from the frequency of tetratype tetrads (T) (see below). Gene-centromere exchange
frequencies in ordered tetrads are estimated from the frequency of second-division

segregation of alleles (see below ).

TETRAD TYPES

In the analysis of tetrads, we are concerned with the relationship of pairs of
genes (gene-gene relationships). For each gene-gene relationship within a single
tetrad there is a tefrad type. THere are just three kinds of tetrad types, namely:
parental ditype (PD), non-parental ditype (NPD) and tetratype (T). _

Consider the cross: ABxab. Tetrads containing two genetically different types
of meiotic products, where two products are like one parent and two like the other
(AB, AB, ab, ab) are designated parental ditype tetrads (PD). Tetrads containing
two genetically different types of meiotic products, where neither type is like either
parent (Ab, Ab, aB, aB) are designated non-parental ditype tetrads (NPD). Tetrads
containing four genetically differing meiotic products, one like each parent, and
two like neither parent (AB, Ab, aB, ab) are designated tetratype tetrads (T) (see
figure 1).

Figure 1.
P;: ABxab
Fi: Aa Bb
f, tetrad types: AB AB ab ab parental ditype
Ab Ab aB aB- non-parental ditype
AB Ab aB ab  tetratype
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A tetrad type designation can be given for each gene-gene relationship in each
tetrad. The importance of these tetrad types was first recognized by Burgeff (1929),
but it was not until later that the methods of analysis were developed (Mather &
Beale 1942, Whitehouse 1942, Perkins 1949, Lindegren 1949, Whitehouse 1949, 1950).

THE ESTIMATION OF EXCHANGE FREQUENCES
BETWEEN LINKED GENES

Assume in the cross of ABxab (figure 1) that the two genes are linked. How
would the three tetrad types (PD, NPD and T) be produced from a meiosis of a
cell heterozygous for the two linked genes (AB/ab)?

We must first make three assumptions, all of which are likely or at least reason-
able: 1) Centromeres segregate at the first division of meiosis (prereduction of the
centromeres). 2) All chromatid exchanges occur at the four strand stage of meiosis.
3) There are no sister-strand exchanges (there are no exchanges between chromatids
attached to the same centromere). Having made these assumptions, we can conclude

' that the three tetrad types would be produced for a linked - gene-gene relationship
by the events diagrammed in figure 2. If no exchanges occurred between the genes
a and b, then both genes would segregate at first division of meiois. That is, the
large A alleles would segregate from the small @ alleles, and the large B alleles
from the small b alleles at first meiotic divicon. Since large A and large B are
attached to the same centromere, they would move to the same pole at first division.
After the second meiotic division the four products would be AB, AB, ab, and ab;
or a PD tetrad. A single exchange between non-sister chromatids and in the region
between genes @ and & would lead to first division segregation of & and second
division segregation of b, and produce a tetratype tetrad. In figure 2 only one of
four possible single exchanges has been diagrammed. If we label the chromatids
from top to bottom as 1, 2 3, and 4; then the four possible non-sister chromatid
single exchanges will be: 1 with 3, 1 with 4, 2 with 3, and 2 with 4. All four of
these single exchanges will produce tetratype tetrads. '

Two-exchange tetrads are of three types: 2-strand doubles, ‘3—strand doubles,
and 4-strand doubles. In figure 2 one exchange in these two exchange tetrads has
been kept constant (the exchange to the left), always involving chromatids 2 and
3. The second exchange has involved 2 and 3 (2-strand double exchange), 1 and
3 and 2 and 4 (3-strand double exchanges), and 1 and 4 (4-strand double exchange).
One can draw 12 more possible two-exchange tetrads for a total of 16, by wvarying
the exchange to the left. These 16 possible two-exchange tetrads, however, can all
be classified as 2-strand, 3-strand or 4-strand double exchanges. The ratio of these
three types of double exchanges, if chromatid involvement is random (no chromatid
interference), will be one 2-strand to two 3-strand to one 4-strand double exchange.

Figure 2 can be summarized as follows:
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Figure 2.
Relationship Between Exchanges and Tetrad Types in a Cross involving the Linked Genes
ABxab
Multiplicity of exchanges Genotypes of Tetrad
No exchanges Single exchanges Two exchanges f, products Type
A B A B AB
s —————. AB
 —esme—— e i
a b a b ab
A B A B
i AB
a b a b Ab
A B aB T
g
ab
=y =
A
A B ’
Ab
NPD
e . aB
a
L aB
No exchange=PD
Single exchange=T
Double exchange frequency
a) 2-strand=PD 14
b) 3-strand=T 14
¢) 4-strand=NPD 14

It is important to note that 4-strand double exchanges produce a unique tetrad type
(NPD). This is a tetrad type which cannot be produced in a linked gene-gene relation-
ship by either non-exchange or single-exchange events. The frequency of non-
parental ditype tetrads, therefore, is a measure of the frequency of multiple exchanges.
If we assume that double exchanges are the highest multiple exchanges occurring,
then the total frequency of double exchanges can be estimated by multiplying the
non-parental ditypes by four. (Perkins 1949).

Genes which are relatively closely linked will produce primarily non-exchange
tetrads (PD). Single exchange tetrads (T) will occur with a lower frequeny
(depending on the degree of linkage). Double exchange tetrads (detected. by NPD)
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will be rare and will vary with the degree of chiasma interference.

The frequency of parental ditype tetrads is a measure of the frequency of non-
exchange meioses. However, some of these PD tetrads occur not as a result of
non-exchange events, but as a result of 2-strand double exchange events. Although
we have no way of directly measuring 2-strand double exchanges, we can estimate
the frequency of 4-strand double exchanges from the frequency of NPD tetetrads.
Since 2-strand doubles and 4-strand doubles occur with equal frequency (each 1%
of total double exchanges), we can use the NPD tetrad frequency as an estimate of
the frequency of occurrence of 2-strand double exchange. Thus: frequency of non
exchanges=1frequency of PD—frequency of NPD. Using brackets to designate
frequency:

[non-exchange tetrads]=[PD]—[NPD] i Equation 1.

We can obtain the frequency of single exchange tetrads from the frequency of
tetratype tetrads, when that frequency is corrected for those tetratypes which result
not trom single exchanges but from 3-strand double exchanges. Since 3-strand
doubles occur with twice the frequency of 4-strand doubles:

[single exchange tetrads]=[T]—2 [NPD] Equation 2.
It has previously been pointed out that:
[double exchange tetrads]=4 [NPD] Egquation 3.

We are now ready to derive a formula for the estimation of exchange frequency
from the observed tetrad type frequencies. The exchange frequency is the average
number of exchanges per total number of tetrads (meioses). It is directly equiva-
lent to chiasma frequency (assuming that each chiasma represents an exchange).
Exchange frequency is given by the following formula:

_single exchanges-2Xx double exchanges
total tetrads

Exchange frequency=

Note that the double exchanges are multiplied by two, since each double exchange
tetrad represents two separate exchange events., The above formula can be expressed
entirely in frequencies:

[single exchanges]+2x[double exchanges]
[non-exchanges]+[single exchanges]--[double exchanges]

Exchange frequency=

By substitution from equations 1, 2, and 3:

i = _[T]—2%[NPD]+2x4x [NPD]
Estimated exchange frequency=—rpry NP | [T]—2 % [NPD]+4x [NED]

By reduction:

[T146x [NPD]
[PD]=[NPD[+[T]
Since the frequencies below the line are equal to one:
Estimated exchange frequency=[T]+6x%[NPD] Equation 4.

(Perkins 1949)

Estimated exchange frequency= —
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Although equation 4 is logically correct if one makes the given assumptions, it
is not generally applied (see Barratt, Garnjobst, Perkins & Newmeyer 1954; Ebersold,
Levine, Levine & Olmstead 1962) because of the large sampling error which may
be involved in multiplying the NPD tetrads by six. It should be

Figure 3.

First-and Second-Divison Segregation in the Ordered Tetrads of Neurospora crassa
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equation 4 assumes no chromatid interference (it assumes that the NPD tetrads will
be 14 of the total number of double exchanges).

In general practice, the tetratype frequency (7T) is utilized in computing gene-
gene map distances, and the NPD tetrads are ignored in this calculation (see below).

THE ESTIMATION OF GENE-CENTROMERE EXCHANGE
FREQUENCIES IN ORDERED TETRADS

In Neurospora crassa, the eight ascospores in a single ascus are the result of the
two meiotic divisions plus a postreductional mitosis of each meiotic product. The
importance of the Neurospora ascus is that the two daughter nuclei of the first
division of meiosis, as well as their respective daughter nuclei remain (with rare
exceptions) in opposite ends of the ascus. Thus, a line drawn through the center
of the ascus (transversely) separates those centromeres, chromatids, and genes which
separated at first division of meiosis (see figure 3).

Since it is highly likely that centromeres are prereduced (the two homologous
centromeres from the two parents segregate at first division), the only way the two
alleles of a gene could segregate at the second division of meiosis would be to
become attached to a different centromere by a chromatid exchange. The frequency
of second-division segregation of alleles is, therefore, a measure of the frequency
of exchange between a gene and it's centromere. It is an estimated exchange
frequency.

-

THE ESTIMATION OF GENE-CENTROMERE EXCHANGE
FREQUENCIES IN UNORDERED TETRADS

Returning again to the cross ABxab (figure 1), consider how the three tetrad
types (PD, NPD and T) could be produced should genes @ and b be on different
chromosomes (non-linked). In figure 4 the simplest modes of production of the
three types of tetrads are given. In the first column of figure 4 are diagrammed
non-exchange tetrads, where there are no exchanges between gene « and it’s centro-
mere or gene b and it's centromere. There are two possible orientations of the
metaphase plate. They may be in a cis position with both centromeres from one
parent on one side of the metaphase plate, or in a frans position, with the two
non-homologous centromeres from one parent on opposite sides of the metaphase
plate. These two orientations should occur with equal frequency and lead to the
random assortment of non-linked genes, The first arrangement (cis) leads to a PD
tetrad, and the second (¢{rans) to a NPD tetrad. Non-linked genes, therefore, should
show an equal frequency of PD and NPD tetrads. It is, indeed, deviations from
this equality which are evidence for linkage in tetrad analysis (see below).

An exchange between either gene and it's centromere will lead to a
tetratype tetrad (column 2 of figure 4). Thus, the frequency of T tetrads is a.
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Figure 4.

The Simplest Modes of Production of the Three Tetrad Types (PD, NPD & T)
When Genes are on Different Chromosomes (Not-Linked)
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measure of the frequency of exchanges in the two regions between the genes and
their respective centromeres. Simultaneous exchanges in both regions are diagram-

med in column 3 of figure 4. Half of these simultaneous exchanges will produce
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tetratype tetrads, the other half producing ditypes (14 PD: 14 NPD).
Let: p=tetratype frequency
x={frequency of exchanges between ¢ and it's centromere
y=1requency of exchanges between & and it's centromere
If we ignore the simultaneous occurrence of exchanges in both regions (consider
only non-exchange tetrads and exchanges involving one region), then the following
relationship exists:

p=z+y

Simultaneous exchanges in both regions should occur at a frequency which is
the product of their independent frequencies (xy). Since simultaneous exchanges
do not necessarily lead to tetratype tetrads, we must correct the above equation as
follows: '

p=(x—zy)+(y—zy)

Since half of the simultaneous exchanges do produce tetratype tetrads (see
figure 4, we can correct the above equation by adding back this portion of the
simultaneous exchanges:

p=(z—ay)+(y—zy)+1/2zy
By reduction:

p=x+y—3/2xy Equation 5.

(Perkins 1949)

Equation 5 gives the relationship between two unknown quantities (x and )
which we would like to calculate, and one known quantity (p) which we can observe
in any cross involving segregation of two non-linked genes. An equation with two
unknowns and one known cannot, obviously, be solved.

A solution to the distances = and ¥, however, is possible if we have one more
independent gene segregating in the cross (if the cross is ABCXabc) (Perkins 1949).
Now we can observe tetratype frequencies for three gene-gene relationships, namely:
the tetratype frequency between genes @ and b (p), between b and ¢ (g), and between
a and ¢ (r). If we designate exchange frequency between ¢ and it's centromere by
z, then:

p=x+y-—3/2xy

qg=y+z—3/2yz

r=x+2—3/2xz

Where: p=tetratype frequency between genes @ and b

g=tetratype frequency between genes b and ¢
r=tetratype frequency between genes @ and ¢

And: x=exchange frequency between gene @ and it's centromere

y=exchange frequency between gene b and it’s centromere
z=exchange frequency between gene ¢ and it’s centromere

We now have three observed (known) values (#, ¢, and 7), and three unknown
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values (&, ¥, and z), and three simultaneous equations. It is possible to solve for
exchange frequencies between the three genes and their respective centromeres
(Perkins 1949). The solutions of the three simultaneous equations are given by
Whitehouse (1950):

r=2/3(1+ 4_6?541%?-9?? Equation 6.
y=2/3(1/ A=A =009 Equation 7.
e =2/3(1¢,/ At r Equation. 8.

Once one has established an exchange frequency between a particular gene and
it’s centromere, one can utilize this gene to establish exchange frequencies between
other independent genes and their respective centromeres. This can be done by a
rearrangement of equation 5 (see Gowans 1960):

p=-22=Y)

9—3y Equation 9,

Where: x=unknown exchange frequency between gene d and it’s centromere
y=known exchange frequency between gene ¢ and it's centromere
p=tetratype frequency between unmapped gene d and mapped gene e

COMPARISON OF MAPPING FUNCTIONS IN TETRAD ANALYSIS
AND SINGLE STRAND ANALYSIS

The exchange frequency between two linked genes or between a gene and it's
centromere is an important relationship to measure, since it is a measure of the
relative distance of the region being considered. It is assumed that the exchange
frequency for any region is constant (for constant conditions). Since we cannot
directly observe the number of exchanges in a whole series of tetrads, we utilize
the tetrad types or second-division segregation frequencies to make an estimate of
the exchange frequency (estimated exchange frequency).

In classical genetic organisms such as maize and Drospophila, the frequency of
crossing-over is estimated from the frequency of observable recombinations between
two linked genes. Crossing-over frequency* is the frequency of chromatids or strands
which have been involved in a cross over:

; cross-over strands
Crossing-over frequency=—, .+,
e 9 o total strands

* “Cross-over frequency” is often used interchangeably in the literature with recombination
frequency. In order to separate the physcial event from the method of measurement of that
event, we will refer to the actual frequency of cross-overs as the crossing-over frequency, and
the observed measure of these events as the recombination frequency (synonym: cross.over
frequency) (Perkins 1955)-
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The crossing-over frequency, fike the exchange frequency, is assumed to be constant
between any two genes. Crossing-over frequency is estimated from the recombina-
tion frequency.

Now consider the relationship between crossing-over frequency and exchange
frequency. Consider a case where five tetrads are analyzed, one of which has a
single exchange (figure 5). Obviously the exchange frequency will be one in five
(1/5). Suppose, however, a single strand analysis were done on the meiotic products
from these same five tetrads. Each tetrad produces four strands for a total of
twenty. Only two of these strands would be recombinant for the two linked genes,
for a recombination frequency of 2/20 or 1/10. It is obvious, therefore, that:

Exchange frequency/2=crossing-over frequency
Also, for this simplé case where only non-exchange and single-exchange events are
involved, and where the same strands are being used for the tetrad analysis and the
single strand analysis, the following equality will hold:

Figure 5.

Relationship Between Exchange Frequency and Recombination Frequency in a Simple Case
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Extimated exchange frequency/2=recombination frequency

Since the concept of genetic map distance was developed in higher organisms
utilizing single-strand analyses, map units are based on an estimate of crossingover
frequency (recombination frequency or derivatives therefrom). Map distance is
generally defined as the percent recombination. If we utilize tetratype frequency
or second division segregation frequency in determining exchange frequency, then
the general equation for converting estimated exchange frequency (tetratype frequ-
ency or second-division segregation frequency) to map units is:

estimated exchange frequency %100

map units= Equation 10,

Where: estimated exchange frequency=[T] OR [2nd division segregation]

Equation 10 is the formula generally utilized to determine map distance between
two linked genes or between a gene and it's centromere in a tetrad analysis (see
Barratt, Garnjobst, Perkins and Newmeyer 1954 for a discussion). It should be
pointed out that in utilizing this equation one is assuming complete interference
(one is assuming that all tetrads are either non-exchange or single-exchange tetrads).
It should also be pointed out that this is the same assumption one makes in comput-
ing map distances from the recombination frequency between two linked genes in
a single-strand analysis. This assumption is possibly warranted in the case of
closely linked genes. However, with distant genes it seems probable that double-
and higher multiple-exchanges are taking place. Increased m'ultiplicity of exchanges
(increases above single-exchanges) has a quite different effect on tetratype frequencies
than it has on recombination frequencies.

The proportion of recombinant single strands expected from tetrads of any rank
(or multiplicity) whatever except 0 is uniformly 14 (Emerson and Rhoades 1933).
This can best be visualized by consulting figure 6. In figure 6, the frequency of
recombination is plotted against the multiplicity of exchanges. If none of the
meioses have exchanges, the recombination frequency will be zero. If every meiosis
has a single exchange, the recombination frequency becomes 50%, since each tetrad
will consist of two recombinant and two parental strands. If every meiosis has
two exchanges, and strand involvement is random, the recombination frequency
remains 502;. This is true because two-strand doubles will produce a 0:4 ratio of
recombinants to parentals, three-strand doubles a 2:2, and four-strand doubles a 4:0
ratio. Since the ratio of two-strand: three-strand: four-strand doubles is 1:2:1, the
recombination frequency will remain 502%. Higher multiplicities of exchanges will
not change this equilibrium.

The proportion of each successive rank or multiplicity of exchange per meiosis
to be tetratypes or to show second-division segregation is given by the following
formula:
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Relationship of Recombination Frequency to Multiplicity of Exchanges
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[T] or [2nd division seg’n.]=2/3 [1—(—14)7]

Where: #=rank or muitiplicity of exchange (Mather 1935)

Figure 7 shows the relationship between tetratype or second-division
segregation frequency and multiplicity of exchanges. Again, if no exchange  occurs
in each meiosis, the tetratype or second-division segregation frequency will be zero.
If one exchange occurs in each meiosis, the tetratype or second-division segregation
frequency becomes 1.0. The addition of a second exchange to each meiosis reduces
the tetratype or second-division segregation frequency by one-half (0.5). With each
increase in multiplicity of exchanges half of the tetratypes or second-division segre-
gation types are converted to ditypes or first-division types respectively, and all of
the ditypes of first-divison segregation types are converted to tetratypes or second-
division segregation types respectively. This produces the fluctuating curve in
figure 7 which eventually reaches an equilibrium at 0.667 tetratype or second-divivison
segregation frequency.

It is obvious that for a situation which assumes no interference, the theoretical
upper limit.of recombination frequency is 502, and that the theoretical upper limit
of tetratype or second-division segregation freciuency is 66.725. Thus, map distances
calculated from recombination frequencies in a single strand analysis, and from
one half the tetratype or second-division segregation frequency in a tetrad analysis
are not completely comparable, especially when the map distances are large. The
differences involved for this situation of complete interference are summarized in

-

figure 8.
Figure 8%
The Comparison of Recombinant Map Distances Approximated from 1/2 the Tetratype or Second-

Division Segregation Frequency, to Recombinant Map Distances Obtained from a Single-Strand
Analysis
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0.0 I 0.0 I 0.0 0.0
0.1 | 0.05 ' 0.056 0.6
0.2 i 0.10 0.106 } 0.6
0.3 ; 0.15 | 0.165 1.5
0.4 0.2 1 0.228 2.8
0.5 ; 0.25 ; 0.302 | 5.2
0.6 0.3 _ 0.392 | 9.2
0.67 0.335 | 0.501 ‘ 16.6

* after Spiegelman 1952

A formula for the conversion of tetratype or second division segregation fre-
quencies to recombination frequency under the assumption of zero interference is
given by Spegelman (1952):
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Recombination frequency=14 [1—(1-3/22)%%] Equation 11.

Where: x=tetratype or second-division segregation frequency

Barratt, Newmeyer, Petkins and Garnjobst (1954) have discussed mapping func-
tions which assume interference levels between zero and complete interference, and
have compared the calculated effect of several levels of interference with actual data
from Drosophila and Neurospora. It appears from their calculations that if one is
going to chose one of the two extreme situations (zero interference or complete
interference) as an assumption for calculatiné map distance that the complete
interference.situation would be the best choice (Equation 10).

THE DETECTION OF LINKAGE AND INDEPENDENCE IN TETRAD ANALYSIS

As pointed out by Perkins (1953) single strand analyses are a more efficient
method (per strand) of detecting linkage than are tetrad analyses. However, since
one may obtain other information from tetrad analysis, one may prefer to detect
linkage also by tetrad analysis. The comparison of the numbers of the two types
of ditype tetrads (PD and NPD) is the most efficicient and accurate method of
linkage detection in tetrad analysis (Perkins 1953). As diagrammed in figure 4,
there should be an approximately equal number of PD and NPD tetrads when two
genes are non-linked. On the other hand, linked genes should produce an excess
of PD over NPD tetrads, as illustrated in figure 2. A significant deviation in one
direction from a 1:1 ratio of PD to NPD tetrads indicates linkage. The deviation
would theoretically always be toward an excess of PD over ‘NPD. Figure 9 gives
the ratios of PD to NPD tetrads which give evidence of linkage at different signific-
ance levels.

If there is no significant deviation from a 1:1 ratio of PD: NPD tetrads, the
two genes can be considered to be independent. There is another criterion for gene
independence in tetrad analyses. It is unlikely that two genes are linked if the
NPD: T ratio significantly exceeds 1:4 (Perkins 1953; Barratt, Newmeyer, Perkins
and Garnjobst 1954). This relationship can best be understood by referring to
figure 7. Two distantly linked genes would have a high multiplicity of exchanges
between them, and therefore would produce a tetratype frequency of 2/3 (figure 7).
The remaining tetrads (1/3) would be ditypes, half of which (1/6) would be non-
parental dityes. Therefore, with distantly linked genes 1/6 of the tetrads would be
NPD, and 4/6 (=2/3) would be tetratypes (1 NPD: 4 T ratio). Genes which are
not linked, on the other hand, would be expected to produce a higher ratio of NPD:
T tetrads (see figure 4).

CONFIDENCE LIMITS ESTIMATED EXCHANGE FREQUENCIES

The determination of standard sampling errors for estimated exchange frequencies
for regions between two linked genes or between a gene and a centromere in an
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ordered tetrad is relatively simple, since the estimated exchange frequencies are
obtained directly from observed values (tetratype frequencies or second-division
segregation frequencies, respectively). Barratt, Newmeyer, Perkins and Garnjobst
(1954) have discussed this subject, and have produced a graph (their figure 8) from
which the confidence limits can be read directly.

Figure 9*
Smallest Numerical Ratios Showing Significant Deviation in One Direction from 1:1
Ratios Attaining Signifcance Ratios Attain-
Total Level (One-Sided) Total ing Significance
Numbers a e | o Numbers Level (One-
il 2l " . | 17 Sided) 52

5 5:0 51 33:18
6 6:0 6:0 52 33:19
7 7:0 7:0 7:0 53 34:19
8 7:1 8:0 8:0 54 34:20
9 8:1 8:1 9:0 55 35:20
10 9:1 O:1 10:0 56 35:21
11 9:2 10:1 10:1 57 36:21
12 10:2 10:2 11:1 58 36:22
13 10:3 11:2 12:1 59 37:22
14 11:3 12:2 12:2 60 38:22
15 12:3 ; 12:3 13:2 61 38:23
16 12:4 { 13:3 14:2 62 39:23
17 13:4 | 13:4 14:3 63 39:24
18 13:5 14:4 [ 15:3 64 40:24
19 14:5 15:4 15:4 65 40:25
20 15:5 15:5 16:4 66 41:25
21 15:6 16:5 17:4 67 41:26
22 16:6 17:5 17:5 . 68 42:26
23 16:7 17:6 18:5 69 43:26
24 17:7 18:6 19:5 70 43:27
25 18:7 18:7 19:6 71 44:27
26 18:8 19:7 20:6 72 44:28
27 19:8 20:7 20:7 73 45:28
28 19:9 20:8 21:7 74 45:29
26 20:9 21:8 22:7 75 46:29
30 20:10 21:9 22:8 76 46:30
31 21:10 22:9 23:8 77 47:30
32 22:10 22:10 23:9 78 47:31
33 22:11 23:10 24:9 79 48:31
34 23:11 24:10 | 25:9 80 49:31
35 23:12 . 24:11 25:10 81 49:32
36 24:12 25:11 26:10 82 50:32
37 24:13 25:12 26:11 83 50:33
38 25:13 26:12 27:11 84 51:33
39 26:13 27:12 28:11 85 51:34
40 26:14 27:13 28:12 86 52:34
41 27:14 28:13 29:12 87 52:35
42 27:15 28:14 29:13 38 53:35
43 28:15 29:14 | 30:13 89 54:35
44 28:16 29:15 | 31:13 90 54:36
45 29:16 30:15 31:14 91 55:36
46 30:16 31:15 32:14 92 55:37
47 30:17 31:16 32:15 93 56:37
48 31:17 32:16 33:15 94 56:38
49 31:18 32:17 ‘ 34:15 95 57:38
50 32:18 33:17 | 34:16 96 57:39
‘ 97 58:39

98 58:40

| 99 59:40

100 59:41

* after Perkins (1953)
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The estimated exchange frequencies in regions between genes and centromeres
in unordered tetrads, however, are not directly observed, but are calculated values.
These values are calculated by means of equation 6, 7, and 8 from the observed
tetratype frequencies for each gene-gene relationship. Since standard sampling
errors must be based on the sample, one must base the standard error on the
observed number of tetratypes for each gene.gene relationship (fs,6; fo,c; fare), and
the total number of tetrads observed for each gene-gene relationship (#a,s; #s,c;

nmc )-

Figure 10
Example of the Application of the Formulae for Standard Sampling Error for Exchange
Frequencies Calculated from Simultaneous Equationt®,
Cene-gene relationship®,

a—b b—c a—c
n 320 479 444
t 40 43 65

»® 0.00074 | 0.00051 0.00104

Exchange frequencies (from equations 12, 13, and 14):
x=nic-1 and centromere=0.0843
y=pab-1 and centromere=0.0209 -
z=thi-1 and centromere=0.0711

Standard Errors (equations 15, 16, and 17):

0.

o(x) = (1/3 0843 ),/ 0.00074-+0.00051+0.00104 =0.0139
.0209

o(y) = (1/%%)}/ 0.00074-+0.00051+0.00104 =0.0155

L0711
o(z) = (1/3~£g;——),/ 0.00074+0.00051-+0.00104 =0.0142
Gene-Centromere Region Exchange Frequency Map Distance
nic-1 0.084340.0139 8.434+1.39
pab-1 0.0209::0.0155 1.04£1.55
thi-1 0.0711+0.0142 3.55£1.42

(1) Method from Whitehouse (1957), data from Gowans (1980).
(2) a=mnic-1, b=pab-1, c=thi-1
(3) Calculated from equations 18. 19, and 20.

The following formulae, given by Whitehouse (1957) can be used for the
calculation of standard sampling error for estimated exchange frequenc1es obtained

by the use of simultaneous equations:
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o(2)=(1/3=2/2) (Vars+VbcFVarc) Equation 12.
o(y)=(1/3=9/2) (Vars +Vbrc FVarc) Equation 13.
a(z)=(1/3—2/2} (Umb‘l'vbrc'*“va,c) Equdfioﬂ 14-
Where:

g 4,0 (Mars—tap)
Ay na,b(znmb'_?)ta,b)z

v = gfar;’(;??bac_fblc_)‘
fae na,b(znb;c_Stb,c )2

Otaye(Mase—tase )___

V56", Da, -

na;c(znmc—gta;c )2

And: a(m),ro-(y), and ¢(z) are the standard sampling errors, respectively, for

the calculated exchange frequencies %, ¥, and z from equations 6, 7, and 8.

Whitehouse (1957) gives an example of the application of these formulae to the

data of Sager (1955). In figure 10 the formulae are applied to the data of Gowans
(1960).

(1)
(2)
(3)
(4)
(5)
(6)
(7).

(8)

(9)
(10)
an
(12)
(19)
(14)
as)

(16)
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