
Taiwania 68(1): 8‒22, 2023 
DOI: 10.6165/tai.2023.68.8  
 

 

8 

 
 

A statistical method to generate high-resolution climate datasets for 
modeling plant distribution range and range shifts under climate change 

in mountainous areas 
 

Chi-Cheng LIAO1,* Huan-Yu LIN2,3, Su-Wei FAN2 
  
1. Department of Life Science, Chinese Culture University, Taiwan, R.O.C. 2. Taiwan Forestry Research Institute, Taipei, Taiwan. 
3. Department of Forestry and Natural Resources, National Ilan University, Yilan County, Taiwan. *Corresponding author’s email: 
hunter_yyl@yahoo.com.tw; Tel: +886-2-2861-0511 ext. 26233; Fax: +886-2-2861-7507 
 

(Manuscript received 20 September 2022; Accepted 29 November 2022; Online published 2 January 2023) 
 
ABSTRACT: This study aims to develop a statistical method to generate high-resolution historical and future climate datasets for 
modeling plant distributions in mountainous area. Two climate datasets that were from Taiwan Climate Change Projection 
Information and Adaptation Knowledge Platform (TCCIP) and meteorological stations were used to construct two historical climate 
datasets with 50 × 50 m2 spatial resolution, respectively. The two historical climate datasets presented similar temperature pattern 
but distinct precipitation patterns in northern Taiwan (NTWN). Random Forests (RF) had predicted similar distribution range of 
natural grassland along mountain ridge when RF were applied by the two climate datasets, whereas RF had predicted restricted 
distribution range when it was applied by true absence data. The two historical climate datasets were added to the relative changes 
of climate variables representing four future climate scenarios. RF method based on the future climate datasets predicted habitat 
loss of natural grassland at the mid and end of this century, regardless of climate datasets and four warming scenarios. Due to the 
altitudinal limits of NTWN, there is almost no chance for natural grassland to track their climatic requirements toward higher 
elevations under climate change. High-resolution historical and future climate datasets generated by the statistical method were 
useful for species distribution model to project species potential distribution range in mountainous area and were available to 
examine species range shifts under climate change. Model performances based on the high-resolution climate dataset may have 
better expressed the climatic requirements and exact climatic niches of species in mountainous areas. 
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INTRODUCTION 
 
Climate change has been recognized as one of the 

major forces threatening biodiversity and impacting natural 
ecosystems on a global scale (Keppel et al., 2012; Miles et 
al., 2004; Orsenigo et al., 2018; Thomas et al., 2004; 
Walther, 2010). Climate change could fundamentally alter 
the species compositions, forest structures, and species 
distribution patterns (Allen et al., 2010; Hamann and Wang, 
2006). Mountain species is particularly susceptible to 
climate change, they will shift distribution range along 
mountain slopes to track climatic requirements in response 
to climate change (Fatemi et al., 2018; Vanneste et al., 
2017; Zhao et al., 2016). However, mountainous areas are 
characterized by steep climatic gradients and support 
patchy habitats that had caused restriction and 
fragmentation of species distribution ranges along 
mountain slopes (Dobrowski, 2011; Lannuzel et al., 2021). 
Due to the steep climatic gradients and patchy habitats, it 
is a crucial task to identify species distribution range in 
mountainous areas and it is more difficult to evaluate 
species range shifts under climate change in mountainous 
areas with complex topography.  

Species distribution models (SDMs) are powerful tools 
for ecologists to project species potential distribution range 
and to predict species range shifts under climate change. 
During the last decade, high-resolution climate datasets 

had been generated from various data sources in order to 
improve the performances of SDMs in mountainous areas. 
These climate data sources include global climate dataset 
(Godsoe et al., 2015; Lin et al., 2018; Maria and Udo, 
2017; Mohapatra et al., 2019; Schorr et al., 2012; Wang 
et al., 2016; Zhu et al., 2018), climate data from 
dataloggers (Ashcroft and Gollan, 2012; Ashcroft et al., 
2012; Dingman et al., 2013; Fridley, 2009; Greiser et al., 
2018; Vanwalleghem and Meentemeyer, 2009) or 
meteorological stations (Liao and Chen, 2021; Meineri 
and Hylander, 2017). High-resolution climate dataset had 
been successfully interpolated from meteorological 
stations in previous studies and had accurately captured 
climate heterogeneity of mountainous areas in a 
subtropical island (Liao and Chen, 2021, 2022). 
Alternatively, local gridded climate dataset had been used 
as a data source to interpolate high-resolution climate 
dataset in the same island (Lin et al., 2018; Lin et al., 2020). 
Local gridded climate dataset that was used as data source 
in the Lin et al. (2018) was downscaled from AR5 General 
Circulation Models (GCMs). The working group of 
Taiwan Climate Change Projection Information and 
Adaptation Knowledge Platform (TCCIP) had generated 5 
× 5 km2 gridded climate dataset from GCMs to represent 
historical climates and future scenarios of Taiwan island 
(Lin et al., 2022). High-resolution climate datasets derived 
from either meteorological stations (Liao and Chen, 2021, 
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2022) or TCCIP’s 5 × 5 km2 gridded climate dataset (Lin 
et al., 2018; Lin et al., 2020) had been applied for SDMs 
to predict the historical distribution range of plant species 
in mountainous areas. It is crucial to examine the 
differences in model results when SDMs were applied by 
these two types of high-resolution climate datasets.  

Additionally, SDMs are also powerful tools to 
evaluate species range shifts in response to climate 
change (Mohapatra et al., 2019; Xu et al., 2021; Zhu et 
al., 2018). High-resolution future climate projection was 
necessary for SDMs to accurately project species range 
shifts in response to climate change. For Taiwan island, 
TCCIP provides 5 × 5 km2 gridded climate dataset 
representing future climate projections (Lin et al., 2022). 
The TCCIP’s future climate projections presents relative 
changes of climate variables in comparison with the 
baseline period (1960-2012). In this study, a statistical 
method was developed to generate high-resolution future 
climate projections by downscaling TCCIP’s future 
climate projections. There are two datasets generated in 
this study representing historical climate conditions, the 
one was derived from meteorological data and the other 
from the TCCIP’s 5 × 5 km2 gridded climate dataset. The 
two historical climate datasets were separately added the 
relative changes of TCCIP’s future climate projections. 
The historical climate datasets and future scenarios were 
both applied for SDMs to predict the current species 
distributions and to evaluate species range shifts in 
response to climate change.  

Random Forest (RF) is a powerful machine learning 
classifier to provide accurate predictions of species 
distributions (Boulesteix et al., 2012; Breiman, 2001; 
Liaw and Wiener, 2002). RF has become a popular 
method to identify correlation between geographical 
extent and climate factors of species (Evans and Cushman, 
2009; Hu et al., 2017; Iturbide et al., 2018; Mi et al., 2017; 
Mohapatra et al., 2019; Williams et al., 2009). A previous 
study had evidently demonstrated a better performance of 
RF than the other five models on predicting potential 
distribution range of natural grassland in mountainous 
area (Liao and Chen, 2022). RF was performed in this 
study to project historical distribution range of natural 
grassland and to evaluate its range shifts in response to 
climate change in mountainous area.  

In this study, natural grassland was selected as the 
target vegetation of SDMs predictions. Natural grassland 
is a prominent and long-term persistent vegetation type in 
mountainous areas with the elevations lower than 1,000 
m above sea level (asl.) in northern Taiwan (NTWN) (Li 
et al., 2013; Liao et al., 2014). Miscanthus sinensis and 
Pseudosasa usawai are mostly the predominant species 
of natural grassland in NTWN (Liao et al., 2012; Liao et 
al., 2014). The occurrences of natural grassland along 
mountain ridge was evidently determined by multiple 
climate factors, such as relatively heavy precipitation and 
strong winds in NTWN (Liao and Chen, 2022). The 

climate condition of natural grassland at low elevations in 
NTWN was significantly different from that of natural 
grassland at subtropical high mountain (Korner, 1998; 
Korner and Paulsen, 2004).  

The major objective of this study aims to develop a 
statistical method to generate historical and future climate 
datasets for modeling plant distributions in mountainous 
areas. Based on the statistical method, two historical 
climate datasets with 50 × 50 m2 spatial resolution were 
derived from meteorological stations and TCCIP’s 
gridded climate dataset, respectively. The two historical 
climate datasets were both applied with RF to project 
potential distribution range of natural grassland. It is 
hypothesized that high-resolution climate dataset derived 
from meteorological stations will result in more accurate 
model predictions than that derived from GCM’s gridded 
climate dataset, such as TCCIP. Future climate datasets 
representing warming scenarios generated by the 
statistical method were also applied for the RF to examine 
range shifts of natural grassland under climate change.  

 

MATERIALS AND METHODS 
 

Study area 
Taiwan is a subtropical island (21°55’- 25°20’N, 

119°30’- 122°00’E) located at the western edge of the 
Pacific Ocean, 150 km to the southeast coast of Mainland 
China (Fig. 1). The subtropical island is characterized by 
monsoon climate (Chen and Tsai, 1983; Su, 1984). 
Southwest monsoon prevails less than 4 months in 
summer which conveys moisture to the southern and 
western slopes of the island’s Central Mountain Range. 
On the other hand, northeast monsoon in winter prevails 
6 months per year in Taiwan which brings heavy rainfall 
and strong winds in northern and eastern slopes of the 
Central Mountain Range. Northeast monsoon had 
significant effects on the plant species distribution in 
Taiwan (Chiou et al., 2010). Particularly, northeast 
monsoon associated with typhoon brings extremely high 
rainfall in the northern Taiwan (NTWN) (Liao and Chen, 
2022) that caused a steep precipitation gradient from the 
coast to inland areas of NTWN. The annual precipitation 
decreased from more than 6,000 mm at the northeastern 
slope to 1,900 mm at the southwestern slope of the 
mountain ridge. The mean monthly temperatures at 
mountain ridge range from 11.3 ℃ in winter to 20.5 ℃ in 
summer and that at coastal area from 17.9 ℃ in winter to 
26.6 ℃ in summer (Liao and Chen, 2022).  

The study area ranges from 24°57’ to 25°17’N and 
121°24’ to 122°00’E in NTWN (Fig. 1) and the area is 
about 1,031 square kilometers (103,100 hectares). The 
highest mountain peak, Qixingshan, in the study area is 
1,120 m above sea level (asl.). Evergreen broad-leaved 
forest is the major vegetation type in NTWN (Hsieh et al., 
1997; Li et al., 2013; Liao et al., 2012). There is no 
deciduous forest in NTWN and native deciduous tree
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Fig. 1. Maps show the study area in northern Taiwan and the geographical location of Taiwan and neighboring countries (upper right 
map). Presence and absence of grassland in northern Taiwan presented by yellow and red solid dots, respectively. Mountain tops 
were represented by white triangles. 
 
species scattered in the native forests of NTWN. The 
forests in NTWN are dominated by species of 
Castanopsis, Cleyera, Cyclobalanopsis, Dendropanax, 
Elaeocarpus, Engelhardia, Gordonia, Helicia, Ilex, 
Keteleeria, Limlia, Litsea, Machilus, Meliosma, Michelia, 
Pinus, Schefflera, Symplocos, and Trochodendron with a 
mean canopy height of 10 m (Li et al., 2013). Natural 
grassland is the target vegetation of this study and it was 
frequently observed at mountain ridge from coast to 
inland areas in NTWN (Fig 1).  

 
Vegetation data collection 

Distribution of natural grassland was constantly along 
the mountain ridge, whereas elevation ranges vary along 
different mountain ridges in the study area (Fig. 1). The 
elevation ranges of the natural grassland at the southeast 
border of the study area extents from 280 to 600 m asl. 
and that along the mountain ridge from Wufenshan to 
Canguangliaoshan and from Datunshan to Zhuzishan 
extent from 360 to 737 m asl. and from 780 to 1070 m 
asl., respectively. Presence and absence data of natural 
grassland were collected along the roads and mountain 
trails in NTWN. Field investigation had observed abrupt 
transitions from natural grassland at mountain ridge to 
closed-canopy forests along mountain slopes in NTWN. 
Thus, the presence data of natural grassland were defined 
as the vegetation without shrubs or trees, whereas the 
closed-canopy forests were defined as absence data. Field 
investigation had recorded 252 presence and 372 absence 
points for modeling the potential range of natural 

grassland (Fig. 1).  
The study area is divided into 50 × 50 m2 gridded cells 

and duplicated records of the presence data were spatially 
verified to ensure only one occurrence within each 
gridded cell. Two types of absence data were used in this 
study. The 372 absence points recorded in the field 
investigation were true absence data. True absence data 
had practically delineated geographical boundaries and 
characterized the climate environments of natural 
grassland (Liao and Chen, 2022). Meanwhile, pseudo-
absence data was random points selected from the 
gridded cells within the study area. Pseudo-absence data, 
known as background data, represented the available 
environmental conditions of the study area. Presence and 
true/pseudo-absence data of natural grassland were used 
to construct the training datasets of species distribution 
model. On the contrary, grasslands close to the farmland 
which pronouncedly caused by anthropogenic 
disturbances were not target vegetation in this study.  

 
Downscale of climate dataset 

The TCCIP is a climate research project with the most 
predominant climate data provider and national 
adaptation policy maker in Taiwan (Lin et al., 2022). The 
TCCIP provided a gridded climate surface with 5 × 5 km2 
spatial resolution (Fig. 2A). Time period of the TCCIP 
climate dataset spans from 1960 to 2012 (Weng and Yang, 
2012). Spatial resolution of 5 × 5 km2 was not available 
to present the climate heterogeneity in the mountainous 
areas (Lin et al., 2018). In this study, the TCCIP climate
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Fig. 2. The TCCIP’s gridded climate dataset and climate surface derived from TCCIP at the upper three maps (A, B, and C) and the 
463 meteorological stations and climate surface derived from meteorological data at lower three maps (D, E, and F). The left maps 
present gridded cells of TCCIP with 5 × 5 km2 spatial resolution (A) and locations of 463 meteorological stations (D) in Taiwan. The 
two central maps are climate surfaces represented precipitation of January in Taiwan island that were derived from TCCIP (B) and 
meteorological stations (E), respectively.  The right two maps were zoomed in to the northern Taiwan (C and F). TCCIP is the Taiwan 
Climate Change Projection Information and Adaptation Knowledge Platform. 
 
dataset was downscaled to generate gridded climate 
dataset with 50 × 50 m2 spatial resolution to capture steep 
environmental features along mountain slopes. The 
downscaling procedures of the historical climate dataset 
includes: (1) interpolation of TCCIP climate dataset to 
generate smooth surfaces of climate variables; (2) 
generation of gridded cells with 50 × 50 m2 spatial 
resolution to extract TCCIP climate data; (3) altitudinal 
adjustment of the extracted climate data.  

In order to make comparable the TCCIP climate data 
with the meteorological data, the TCCIP’s historical 
climate dataset with the time period from 2000 to 2012 
was retrieved from the original TCCIP climate dataset 
(1960-2012). The retrieved TCCIP climate dataset (2000-
2012) was used to interpolate smooth surfaces of climate 
variables by means of Kriging method to present climate 
characteristics of Taiwan island (Fig. 2B and 2C). The 
interpolations were performed in ArcInfo software (ESRI, 
Redlands, California, USA) and had generated .tif files of 
climate variables. Gridded cells with spatial resolution of 
50 × 50 m2 were also generated in ArcInfo software. A 

total of more than 0.4 million gridded cells were 
generated in the study area. For each gridded cell, 
longitude, latitude, and elevation were obtained from a 
digital terrain model (DTM) with a resolution of 20 by 20 
meters been developed by the Department of Geography, 
Chinese Culture University. The elevation data obtained 
from DTM was named as DElev. Subsequently, the 50 × 
50 m2 gridded cells were mapped and overlapped with 
the .tif files of the TCCIP climate surfaces to extract 
climate data. The TCCIP climate dataset with 50 × 50 m2 
spatial resolution was named as TCD50. Furthermore, 
elevations of the TCCIP points were also interpolated by 
Kriging method in ArcInfo software to generate a smooth 
elevation surface (TElev). The gridded cells of TCD50 
was overlapped with TElev to extract the elevation data. 
The differences between DElev and TElev was used for 
altitudinal adjustment of TCD50. The function for 
altitudinal adjustment is: AdjTCD50 = slope × (DElev – 
TElev) + TCD50. The abbreviation AdjTCD50 is adjusted 
TCCIP climate data with 50 × 50 m2 spatial resolution. The 
slope of the function, namely the empirical lapse rate, was 
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Fig. 3. Climate surfaces with 50 × 50 m2 spatial resolution derived from TCCIP climate dataset (A and B) and meteorological data (C 
and D). The maps present the annual total precipitation (left column) and annual mean temperature (right column) after altitudinal 
adjustment. The precipitation pattern derived from TCCIP climate dataset presents highest precipitation along mountain ridge in 
northern Taiwan (NTWN) (A). On the contrary, climate surface derived from the meteorological data presents the highest precipitation 
at the northeastern slope of the mountain ridge and significant topographical heterogeneity of precipitation at eastern area of NTWN 
(C). The temperature patterns were slightly different along mountain ridge between the right two maps (B and D). Mountain tops 
represented by dark triangle were the same as in Fig. 1. TCCIP is the Taiwan Climate Change Projection Information and Adaptation 
Knowledge Platform. 
 
the slope of linear correlation calculated from the 
elevation and climate data of the nearest 16 TCCIP points. 
Linear regression model was implemented by “stats” 
package within the R environment (Chambers and Hastie, 
1992).  

In addition to the AdjTCD50, another climate dataset 
was derived from the meteorological data (Fig. 2D) The 
daily data of meteorological stations from 2000 to 2012 
was downloaded from the website of Central Weather 
Bureau (CWB, https://www.cwb.gov.tw/V7/forecast/) 
and were used to calculate mean monthly temperature and 
precipitation. Mean monthly temperature and 
precipitation derived from meteorological stations were 
imported to ArcInfo software to generate smooth surfaces 
of climate variables (Fig. 2E and 2F) by means of Kriging 
method. The .tif files of smooth climate surfaces derived 
from meteorological data were also overlapped with the 
50 × 50 m2 gridded cells to extract climate data. This is 
the meteorological climate dataset with 50 × 50 m2 spatial 
resolution (MCD50). For each gridded cell, the same 
function was used to adjust MCD50 and the function is: 
AdjMCD50 = slope × (DElev – TElev) + MCD50. The 
abbreviation AdjMCD50 is adjusted meteorological 
climate data with 50 × 50 m2 spatial resolution. It is 

noteworthy that the slope of this function was calculated 
from the nearest 12 meteorological stations.  

The altitudinal adjusted climate data, including 
AdjTCD50 and AdjMCD50, were used as historical 
climate datasets for modeling species distributions. The 
two climate datasets were both created taking into 
account the following 9 variables: mean annual 
temperature (Tann), mean maximum temperature of the 
warmest month (Twrm), mean minimum temperature of 
the coldest month (Tcld), mean temperature in summer 
(Tsmr) and winter (Twnt), temperature differences 
between warmest and coldest months (Tdif), annual total 
precipitation (Pann), total precipitation in summer (Psmr) 
and winter (Pwnt). The climate surfaces derived from 
TCCIP and meteorological data presented distinct 
precipitation patterns (Pann) and similar temperature 
pattern (Tann) in the NTWN (Fig. 3). 

 
Downscale of future climate projection 

The TCCIP also provided future climate projections 
based on different AR5 General Circulation Models 
(GCMs) and four scenarios (Weng and Yang, 2012). The 
future climate projections of Taiwan island were 
downscaled from 49 GCMs during the 5th phase of the 
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Coupled Model Intercomparison Project (CMIP5) and 
covers three time periods (2016-2035, 2046-2065, 2081-
2100) and four Representative Concentration Pathways 
(RCPs) (Lin et al., 2018; Weng and Yang, 2012). The 
four RCPs have been used to indicate various warming 
conditions in the future from the highest emission and the 
warmest scenario (RCP 8.5), to two intermediate 
emissions and scenarios (RCP 6.0, RCP 4.5), to the 
lowest emission and the most mitigated scenario (RCP 
2.6) (IPCC, 2013). Among the 49 available GCMs, only 
the Community Earth System Model, version 1, with the 
Community Atmosphere Model, version 5 (CESM1-
CAM5) was used in this study. The CESM1-CAM5 
which consists of coupled atmosphere, ocean, land and 
sea ice component models is an open source, 
comprehensive model used in simulations of the Earth’s 
past, present and future climates (Kay et al., 2015). The 
future climate projection of Taiwan island was 
downscaled into 5 × 5 km2 gridded climate dataset by 
TCCIP based on the CESM1-CAM5 climate model. 

The TCCIP gridded future climate projections 
presented the relative changes of the mid and late of the 
century to the baseline climate data 1960-2012, whereas 
the time period of AdjTCD50 and AdjMCD50 generated 
in this study was the early of this century 2000-2012. 
Thus, the time period of baseline climate data should be 
revised from the late of the 20th century (1960-2012) to 
the early of the 21th century (2000-2012). The future 
climate projection presented by relative changes between 
the early (2000-2012) and mid as well as between early 
and late of the 21th century were necessary to recalculate. 
The relative changes between the early and mid of the 21th 
century was obtained by multiplying the relative changes 
of TCCIP future climate projections by the ratio of the 
year time length between the early and mid of 21th century 
to the year time length between baseline (1960-2012) and 
mid of the 21th century. The relative changes between the 
early and late of the 21th century was also calculated by 
the same method.  

The relative changes between early and mid as well 
as between early and late of the 21th century were also 5 
× 5 km2 gridded data that were used to generate .tif files 
of smooth climate surfaces by means of Kriging method 
performed in ArcInfo software. The gridded cells with 50 
× 50 m2 spatial resolution was overlapped with the .tif 
files of smooth climate surfaces to extract the relative 
changes of climate data. The two historical climate 
datasets, AdjTCD50 and AdjMCD50, were separately 
overlapped with the relative changes of 50 × 50 m2 
gridded climate datasets to project future climates 
(Supplement: Fig. S1 and S2).  

 
Modelling technique 

In this study, Random Forests (RF) implemented by 
“biomod2” package in R software (Thuiller et al., 2016) 
was used to project potential distribution range of natural 

grassland and to predict future changes under different 
climate scenarios. Although “biomod2” provides several 
model algorithms in the package, performance of RF was 
evidently much better than the other models (Liao and 
Chen, 2022). RF is a machine learning method that 
handles numerous variables and is capable of detecting 
complex relationships among model variables without 
making a prior assumption about the type of relationship 
(Breiman, 2001). The two gridded climate datasets, 
AdjTCD50 and AdjMCD50, were used as two testing 
datasets to evaluate the potential distribution range of 
natural grassland. The two training datasets were 
generated from the overlapping of presence and 
true/pseudo-absence data of natural grassland with 
AdjTCD50 and AdjMCD50 to extract climate data. 
Presence and true/pseudo-absence data of natural 
grassland with climate data were randomly re-sampled 
200 data records to create training datasets. The training 
datasets were divided into two subsets in order to evaluate 
model accuracy. The first was 80% random subset of the 
presence and absence data to train the model, while the 
remaining 20% was used for evaluation. The 80% and 
20% random subsets were resampled 100 times to 
quantify the uncertainties in model predictions. Model 
results can be mapped and overlapped with the presence 
points of natural grassland to detect the model 
performance (Liao and Chen, 2022). Field investigation 
had verified distinct boundaries between natural 
grassland and evergreen broadleaved forests and, 
therefore, a better model performance can be determined 
by a considerable overlap between model results and 
presence points of natural grassland. In addition, model 
accuracy was represented by True Skill Statistics (TSS) 
and receiver operating characteristic (ROC) curve (Fois 
et al., 2015; Lannuzel et al., 2021; Qiao et al., 2019; 
Thuiller et al., 2016; Xu et al., 2021). 

 

RESULTS  
 

Historical distribution ranges 
Historical distribution range predicted by RF based on 

the two climate datasets presented similar distribution 
pattern of natural grassland along mountain ridge in 
NTWN (Fig. 4). Model results based on the presence and 
pseudo-absence data had wider distribution range along 
mountain ridge (Fig. 4A and 4C). No significant 
difference could be observed when RF method was 
applied by different climate datasets (Fig. 4A and 4C). 
However, it is evident that true absence data had 
profoundly restricted distribution range of natural 
grassland (Fig. 4b and 4d) in contrast to the model results 
based on the pseudo-absence data (Fig. 4A and 4C). 
Climate dataset had weak effects on shifting projection 
range of natural grassland, while true absence data had 
significant effects on restricting potential distribution 
range of natural grassland. 
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Fig. 4. Potential distribution range predicted by Random Forests (RF) based on the climate datasets with 50 × 50 m2 spatial resolution 
derived from the TCCIP climate dataset (A and B) and meteorological data (C and D). The yellow and red circle with dark outline are 
presence and true absence points of natural grassland, respectively. White areas with dark outline are the potential distribution range 
predicted by Random Forests. Wider distribution ranges were presented based on presence and pseudo-absence data (A and C), 
whereas narrower distribution ranges were showed based on presence and true absence data (B and D). TCCIP is the Taiwan Climate 
Change Projection Information and Adaptation Knowledge Platform. 
 

 
Fig. 5. Model evaluation indices, True Skill Statistics (TSS) and 
receiver operating characteristics (ROC) curve, of Random 
Forests (RF). The TSS and ROC value based on the adjusted 
TCCIP climate dataset with 50 × 50 m2 spatial resolution 
(AdjTCD50) and adjusted meteorological climate dataset with 50 
× 50 m2 spatial resolution (AdjMCD50). The values of TSS and 
ROC were lower if the RF were implicated by true absence data.  
TCCIP is the Taiwan Climate Change Projection Information and 
Adaptation Knowledge Platform. 

Model predictive accuracy represented by TSS and 
ROC presented inconsistent results. True absence data 
accurately restricted distribution range of natural 
grassland along mountain ridge, whereas the values of 
TSS and ROC were always lower when model was 
applied by true absence data, regardless of climate 
datasets (Fig. 5). Potential distribution range restricted by 
true absence data undoubtedly leads to a better model 
performance, since true absence data were locations of 
evergreen broadleaved forests and were geographically 
close to the boundaries of natural grassland. True absence 
data defines the geographical boundaries as well as 
climatic boundaries between natural grassland and 
evergreen broadleaved forests in NTWN. Gridded cells 
located at the border of natural grassland with similar 
climatic conditions were classified as either presence or 
absence cells that had significantly increased the 
omission and commission errors of model predictions. 
Under such circumstances, lower values of model 
evaluation indices (TSS and ROC), as a consequence of 
model prediction based on true absence data, did not lead 
to less accurate model performances. It is believed that 
true absence data associated with high-resolution climate 
datasets had resulted in good model performances and 
accurate distribution maps of plants.  

Climate variables contributed most to the model predictions  
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Table 1. Importance of variables generated by Random Forest based on the true and pseudo-absence. Two climate datasets had 
been applied for the model predictions. 
 

  AdjTCD50*  AdjMCD50# 
  Pseudo absence True absence  Pseudo absence True absence 
Tmean Mean annual temperature 1.5 ± 0.5 9.1 ± 1.7  9.2 ± 3.7 15.8 ± 3.1 
Tsmr Mean temperature in summer 7.2 ± 2.6 18.4 ± 3.3  21.1 ± 6.2 8.8 ± 1.8 
Twnt Mean temperature in winter 0.7 ± 0.2 9.3 ± 1.6  6.5 ± 3.3 12.0 ± 2.0 
Twrm Temperature in warmest month 18.2 ± 6.2 8.4 ± 1.2  45.0 ± 7.2 7.6 ± 1.3 
Tcld Temperature in coldest month 1.6 ± 0.6 9.2 ± 1.2  1.2 ± 0.4 6.5 ± 1.4 
Tdif Temperature differences between warmest and coldest months 15.4 ± 4.0 10.4 ± 1.3  3.2 ± 1.7 3.6 ± 0.6 
Pann Annual total Precipitation 7.7 ± 2.0 11.7 ± 1.7  1.4 ± 0.5 6.4 ± 0.8 
Psmr Precipitation in summer 18.6 ± 4.9 16.2 ± 1.7  7.3 ± 2.2 29.4 ± 2.5 
Pwnt Precipitation in winter 29.0 ± 6.2 7.2 ± 1.1  5.1 ± 1.4 10.0 ± 1.3 

 

AdjTCD50*: adjusted TCCIP climate dataset with 50 × 50 m2 spatial resolution. TCCIP is the Taiwan Climate Change Projection and Information Platform. 
AdjMCD50#: adjusted meteorological climate dataset with 50 × 50 m2 spatial resolution. 

 
were inconsistent between the two climate datasets or 
between two types of absence data (Table 1). Three 
climate variables, Pann, Twnt, and Tcld, have 
consistently low contributions to the model predictions. 
No specific climate variable had constantly high 
contribution to the model predictions.  

 
Climate conditions of natural grassland  

Frequency of gridded cells along gradients of climate 
variables demonstrated the climate conditions of NTWN. 
For most of the climate variables, slightly differences 
could be observed between the two climate datasets, 
AdjTCD50 and AdjMCD50 (Fig. 6). Only two climate 
variables, Twrm and Tcld, presented considerable 
differences between the two climate datasets (Fig. 6). The 
upper limits of Tcld and range of Twrm were significantly 
different between the two climate datasets. Among these 
two climate variables, Twrm contributed most to the 
model result when the model was applied by AdjMCD50 
and pseudo-absence data (Table 1). The differences of 
these two climate variables resulted in a distinction of the 
Tdif between the two climate datasets. Temperature range, 
upper and lower limits of the Tdif were significantly 
different between the AdjTCD50 and AdjMCD50. 
However, there was no evidence to show the correlation 
between gradient length and ranges of climate variables 
(Fig. 6) and its contribution to model predictions (Table 1).  

Along the gradient of the same climate variable, 
occurrences of natural grassland show no conspicuously 
different patterns between the two climate datasets (Fig. 
6). The mechanism behind the contribution of climate 
variables to the model predictions is still elusive. It is 
simply concluded that occurrences of natural grassland 
along mountain ridge in NTWN was determined by 
multiple climate factors.  

 
Future distribution range  

The predicted suitable range of natural grassland 
under historical climate conditions (2000-2012) were 
mainly along mountain ridge in NTWN. Based on the 
four RCPs, RF method projected habitat loss of natural 

grassland at the mid and end of the 21th century (Fig. 7). 
Future climate change leads to a geographical constraint 
of natural grassland in NTWN. Due to the altitudinal 
limits in NTWN, there is almost no chance for natural 
grassland to shift their distribution range upslope to track 
the suitable climate requirements under climate change. 
Low elevation in NTWN is evidently resulted in a range 
restriction of natural grassland in the future.  

The western area of NTWN was partly protected by 
Yanminghsan National Park. Anthropogenic disturbance 
has low effects on the distribution range of natural 
grassland in National Park. Thus, the major factor leads 
to the habitat loss of natural grassland is certainly the 
climate change at the mid and end of this century. 

 

DISSCUSSION 
 

Climate heterogeneity in mountainous areas was 
drastically induced by local ecological forces (Ashcroft et 
al., 2012; Dobrowski, 2011; Lenoir et al., 2017; Meineri 
and Hylander, 2017) and it can be difficult to distinguish 
in the broader-scale climate datasets (Guisan et al., 2007), 
such as the WorldClim (Fick and Hijmans, 2017) or 
Chelsa climate datasets (Karger et al., 2017). Broader-
scale climate datasets may have resulted in bias model 
predictions especially in mountainous areas. This study 
developed a practical and applicable method to generate 
high-resolution climate dataset for modeling species 
distribution in mountainous areas. The statistical method 
developed in this study had generated two high-resolution 
climate datasets from two data sources. RF method based 
on these two high-resolution climate datasets had 
successfully projected potential distribution range of 
natural grassland in mountainous areas.  

High-resolution climate dataset can improve model 
performance only when it had successfully reflected 
heterogeneous climate features in mountainous areas. In 
NTWN, remarkably steep precipitation gradient from 
coastal to inland areas was evidently caused by winter 
monsoon. High-resolution climate dataset derived from the 
meteorological data, the AdjMCD50, had successfully
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Fig. 6. Frequencies of gridded cells along elevation and climatic gradients of 9 predictors in northern Taiwan (NTWN). There are two 
climate datasets, the left column is adjusted TCCIP climate dataset with spatial resolution of 50 × 50 m2 (AdjTCD50) and the right 
column is adjusted meteorological climate dataset with spatial resolution of 50 × 50 m2 (AdjMCD50). The grey histograms present the 
frequency of total gridded cells in the NTWN. The subplot with white histograms present the frequency of gridded cells with presence 
of natural grassland projected by Random Forests based on pseudo-absence data (upper subplot) and true absence data (lower 
subplots). TCCIP is the Taiwan Climate Change Projection Information and Adaptation Knowledge Platform. 
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Fig. 6. Continued. 
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Fig 7. Suitable habitats of natural grassland under climate change projected by Random Forests (RF) based on (A) adjusted TCCIP 
climate dataset with 50 × 50 m2 spatial resolution (AdjTCD50) and (B) based on adjusted meteorological climate dataset with 50 × 50 
m2 spatial resolution (AdjMCD50). The white area with dark outline is the historical distribution range based on pseudo-absence (upper 
two rows of A and B) and true absence data (lower two rows of A and B). The yellow areas are future distribution ranges projected by 
RF based on the future climate datasets at mid (2046-2065) and late (2081-2100) of the 21th century that were derived from TCCIP 
climate dataset and adding changing amounts of the four climate scenarios. The four columns present distribution ranges of natural 
grassland under RCP 2.6 (left column), 4.5 (mid left column), 6.0 (mid right column), and 8.5 (right column). The future climate 
projections of Taiwan island were downscaled from the CESM1-CAM5. TCCIP is the Taiwan Climate Change Projection Information 
and Adaptation Knowledge Platform.. 
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captured this steep precipitation gradient as well as highly 
heterogeneous climate features in NTWN (Fig. 3B). On 
the contrary, the AdjTCD50 derived from the TCCIP 
gridded climate dataset presented a precipitation gradient 
from low to high elevations (Fig. 3A). Although the 
AdjTCD50 and AdjMCD50 reflected distinct 
precipitation gradients, they presented similar pattern of 
annual mean temperature along mountain slopes in 
NTWN (Fig. 3B and 3D). In addition, distinct 
precipitation gradients were not the only differences 
between the AdjTCD50 and ADjMCD50. The 
frequencies of gridded cells along the gradients of Tcld, 
Twrm, and Tdif were different between the AdjTCD50 
and ADjMCD50 climate datasets. The two climate 
datasets presented different climate conditions of NTWN. 
Given the circumstance, meteorological data is the 
practical and direct records of climate conditions in 
mountainous areas. High-resolution climate dataset 
derived from direct and practical data records is available 
to reflect heterogeneous climate features in mountainous 
areas. In contrast, TCCIP gridded climate dataset 
downscaled from GCMs was indirect climate data source 
that had generated more gentle and more even climatic 
conditions in mountainous areas. The distinct climate 
features of the two high-resolution climate datasets were 
apparently caused by different data sources but not the 
procedure of the statistical method.  

Even though the precipitation gradients presented by 
AdjTCD50 and AdjMCD50 were distinct in NTWN, RF 
method based on these two climate datasets projected 
similar distribution ranges of natural grassland along 
mountain ridge in the study area. Prediction distribution 
range based on the AdjMCD50 was distantly more close 
to the true absence data of natural grassland. True absence 
data was geographically close to the real boundaries of 
natural grassland in NTWN, so the model results close to 
the true absence data had more precisely projected the 
distribution range of natural grassland. In spite of this 
result, model prediction based on the AdjTCD50 was not 
an error performance, it was merely not as accurate as that 
based on the AdjMCD50. Thus, model performance 
based on the high-resolution climate datasets derived 
from coarser one, such as TCCIP gridded climate dataset, 
or derived from meteorological data were both useful for 
model predictions. Meteorological data is a better source 
to generate high-resolution climate dataset for SDMs in 
mountainous areas. However, meteorological station is 
usually sparse in mountainous areas which makes the 
coarser gridded climate dataset the only available data 
source of mountainous areas. If coarser gridded climate 
dataset is the only available data source, the method 
developed in this study is still applicable to interpolate 
high-resolution climate dataset in mountainous areas and 
model results based on the derived high-resolution 
climate dataset are potentially acceptable.  

Meteorological data is certainly a better source to 

generate high-resolution climate dataset for capturing 
climate heterogeneity in mountainous areas. However, 
meteorological data do not present future climate 
scenarios. Therefore, high-resolution future climate 
datasets were necessary to generate from gridded climate 
datasets derived from GCMs. This study also developed 
a novel method to generate high-resolution future climate 
datasets for various warming conditions. The relative 
changes of the mid and late of the 21th century to the early 
21th century climate data were added to the high-
resolution climate datasets to generate future climate 
projections in the study area. The high-resolution future 
climate datasets were available to project restricted 
distribution range of natural grassland at the mid and end 
of the 21th century (Fig. 7). The statistical method to 
generate high-resolution future climate datasets is 
practically useful for RF method to project range shifts of 
plant species and is recommended to apply for some other 
mountainous areas. 

Occurrences of natural grassland along mountain 
ridges at low elevation is consistent with the presence of 
low elevation treeline in NTWN. Treeline was 
characterized by harsh environments, such as cold soil 
temperature (Korner, 1998; Liu et al., 2011; Smith et al., 
2009). Lowest temperature in coldest month was 
proposed to be the probable factor associated with the 
occurrence of low elevation treeline in NTWN (Liao and 
Chen, 2022). Temperature plays as a critical factor to 
limit growth of tree species in NTWN and may have 
related to the potential distribution range of natural 
grassland. In this study, the temperature factor presented 
similar pattern along mountain slopes between the two 
climate datasets had resulted in similar potential 
distribution range of natural grassland predicted by RF. 
In addition, increases of temperatures at the mid and end 
of this century have evidently caused distributional 
constraints of natural grassland as well as potential 
expansion of the evergreen broadleaved forests in NTWN. 
Future climate dataset generated in this study are 
supposedly useful for projecting future geographical 
range shifts of ecosystems in mountainous areas.  

In this study, natural grassland was played as a target 
vegetation for evaluating the expansion or constraint of 
distribution range. Distinct boundaries between natural 
grassland and evergreen broadleaved forests make the 
natural grassland as a good target for model predictions. 
Model results determined that natural grassland in 
NTWN is susceptible to climate change and distribution 
range of natural grassland will be constraint at the end of 
the 21th century. Also, rare species depend on the 
ecosystem of natural grassland are likely to be threatened 
by constraint of natural grassland under climate change. 
Impacts of climate change on the species distribution 
range in mountainous areas deserve particular 
conservation attentions, since these species are likely to 
react sensitively to climate change.  



 
Taiwania Vol. 68, No. 1 

 
 

20 

In NTWN, Miscanthus sinensis and Pseudosasa 
usawai are the predominant species of natural grassland 
along mountain ridges (Liao et al., 2014). It is a critical 
issue that climatic niches of these two species are 
indiscriminate and are probably having convergent 
climatic niche in mountainous areas. Niche convergence 
of phylogenetic distantly related species was proposed to 
be a primary role in driving community assembly in local 
vegetation (Pearse and Hipp, 2012; Qian, 2017). Further 
studies will be necessary to conduct on this topic in 
NTWN to identify characteristics of climatic niches 
between these two species and to evaluate their responses 
to climate change.  

The values of TSS and ROC were both higher while 
RF was applied by pseudo-absence data (Fig. 5). The TSS 
is indicator of discrimination capacity, which quantifies 
how well the model can distinguish presences from 
absences or vice versa (Hao et al., 2019). On the other 
hand, ROC curve illustrates the performance of a 
classifier across the entire range of a decision threshold 
(Khoshgoftaar et al., 2007). Pseudo-absence points 
environmentally distant from the presence points increase 
the rate of well-predicted absence (Lobo et al., 2008) and 
evidently decrease the omission and commission errors of 
model predictions. On the contrary, true absence data 
were geographically and environmentally close to the 
presence points that increases omission and commission 
errors of model predictions. Pseudo-absence data 
geographically distant from the presence points caused 
higher values of the TSS and ROC index. Despite of, 
model predictions were still recommended to apply by 
true absence data because true absence data had 
accurately delineated the geographical distribution ranges 
and environmental spaces of plants. 

Habitat fragmentation and steep climatic gradient are 
common features in mountainous areas because of 
complex topography. Native mountainous species are 
usually habitat-restricted and are more vulnerable to 
climate change. Particularly, rare species with locally 
restrict distribution are often critically affected by certain 
local elements, such as the occurrences of favorable 
microsites and microclimates (Elith and Leathwick, 2009; 
Heikkinen et al., 2012). Thus, designation of effective 
protected areas for conserving plant species is a 
challenging task in mountains areas and it relies on an 
accurate distribution map to show geographical extent 
and favorable microsites in mountainous areas. However, 
management planning often suffers from a lack of 
accurate distribution map, resulting in a poor 
understanding of species biogeographical patterns and 
ecological requirements (Lannuzel et al., 2021). An 
accurate distribution map projected by SDMs relies on a 
high resolution climate dataset. High-resolution climate 
dataset precisely captured heterogeneous climate features 
in mountainous areas are expected to project accurate 
distribution maps of plant species showing geographical 

extent in mountain areas. High-resolution climate 
datasets generated in this study had evidently improved 
model performance and provides effective information on 
conservation management in response to climate change. 
The statistical method developed in this study is 
confidently applied to generate high-resolution historical 
and future climate datasets. Most importantly, the 
statistical method is available to interpolate high-
resolution climate dataset even from coarser gridded 
climate dataset. Model predictions based on the high-
resolution climate datasets may have better expressed the 
climatic requirements and exact climatic niches of species 
and may provide useful suggestions for designation of 
conservation management in mountainous areas. 
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