Research Paper

Rhizobacteria alleviate the adverse effects of salt stress on seedling growth of Capsicum annuum L. by modulating the antioxidant enzyme activity and mineral uptake

Melek Ekinci, Ayhan Kocaman, Sanem Argin, Metin Turan, Fatih Dadasoglu, Ertan Yildirim

Published on: 05 July 2021

Page: 287 - 297

DOI: 10.6165/tai.2021.66.287

Abstract

Salinity is one of the most important factors restricting vegetative production, especially in arid and semi-arid regions. In this study,the effects of the exogenous plant growth-promoting rhizobacteria (PGPR: Bacillus pumilus UG-41, Bacillus cereus UG-50) application on seedling growth, concentration of plant nutrient elements, antioxidant activity and chlorophyll, proline, sugar, hydrogen peroxide (H2O2), malondialdehyde (MDA), hormone contents of pepper seedlings under salinity stress conditions (100 mM NaCl) were investigated. Our results showed that gibberellic acid (GA), salicylic acid (SA), indole acetic acid (IAA), leaf relative water content (LRWC) and the concentration of all plant tissue nutrients investigated except for Na were decreased by salt stress. On the other hand, PGPR treatment increased the plant growth parameters by increasing the proline, sucrose, hormone and chlorophyll contents; altering the mineral uptake and increasing the antioxidant enzyme activity in pepper seedlings under salt stress. In conclusion, PGPR treatment may be used as an effective technique to protect the plants against salinity stress since the bacteria positively impact the ability of the plant to cope with the stress by particularly increasing the antioxidant enzyme activity, hormone level and mineral uptake.

Keyword: Antioxidant enzyme activity, bacteria, gibberellic acid, mineral uptake, salicylic acid, salinity stress

Literature Cited

Acosta-Motos, J.R., M.F. Ortu?o, A. Bernal-Vicente, P. Diaz-Vivancos, M.J. S?nchez-Blanco, and J.A. Hern?ndez. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1): 18.
DOI: 10.3390/agronomy7010018View Article Google Scholar

Aktas, H., K. Abak, I. Cakmak. 2006. Genotypic variation in the response of pepper to salinity. Sci. Hortic. 110(3): 260?266.
DOI: 10.1016/j.scienta.2006.07.017View Article Google Scholar

Alscher, R.G. and J.R. Cumming. 1990. Stress Responses in Plants: Sdaptation and Acclimation Mechanisms. Wiley-Liss.

Alt?n, N. and T. Bora. 2005. Bitki geli?imini uyaran k?k bakterilerinin genel ?zellikleri ve etkileri. Anadolu Ege Tar?msal Ara?t?rma Enstit?s? Dergisi 15(2): 87?103.

Arrowsmith, S., T.P. Egan, J.F. Meekins, D. Powers, M. Metcalfe. 2012. Effects of salt stress on capsaicin content, growth, and fluorescence in a Jalape?o cultivar of Capsicum annuum (Solanaceae). Bios 83(1): 1?7.
DOI: 10.1893/0005-3155-83.1.1View Article Google Scholar

Ashraf, M. and P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166(1): 3?16.
DOI: 10.1016/j.plantsci.2003.10.024View Article Google Scholar

Azuma, R., I. Naoko, N. Nakayama, R. Suwa, N.T. Nguen, J.A. Larrinaga-Mayoral, M. Esaka, H. Fujiyama, H. Saneoka. 2010. Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci. Hortic. 125(3): 171?178.
DOI: 10.1016/j.scienta.2010.04.006View Article Google Scholar

Bashan, Y. and G. Holguin. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30(8-9): 1225?1228.
DOI: 10.1016/S0038-0717(97)00187-9View Article Google Scholar

Bates, L.S., R.P. Waldron, I.W. Teaxe. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39(1): 205?207.
DOI: 10.1007/BF00018060View Article Google Scholar

Battal, P. and B. Tileklioglu. 2001. The effects of different mineral nutrients on the levels of cytokinins in maize (Zea mays L.). Turk. J. Bot. 25: 123?130.

Bolarin, M.C., F. Perez-Alfocea, E.A. Cano, M.T. Estan, M. Caro. 1993. Growth, fruit yield and ion concentration in tomato genotypes after pre-and post emergence salt treatments. J. Am. Soc. Hortic. Sci. 118(5): 655?660.
DOI: 10.21273/JASHS.118.5.655View Article Google Scholar

Caba?ero, F.J., V. Mart??nez, M. Carvajal. 2004. Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake? Plant Sci. 166(2): 443?450.
DOI: 10.1016/j.plantsci.2003.10.010View Article Google Scholar

Cassaniti, C., D. Romano, M.E.C.M. Hop, T.J. Flowers. 2013. Growing floricultural crops with brackish water. Environ. Exp. Bot. 92: 165?175.
DOI: 10.1016/j.envexpbot.2012.08.006View Article Google Scholar

Chartzoulakis, K. and G. Klapaki. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 86(3): 247?260.
DOI: 10.1016/S0304-4238(00)00151-5View Article Google Scholar

Chopra, J., N. Kaur, A.K. Gupta. 2000. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry 53(5): 539?548.
DOI: 10.1016/S0031-9422(99)00545-2View Article Google Scholar

Connor, J.D., K. Schwabe, D. King and K. Knapp. 2012. Irrigated agriculture and climate change: the influence of water supply variability and salinity on adaptation. Ecol. Econ. 77: 149?157.
DOI: 10.1016/j.ecolecon.2012.02.021View Article Google Scholar

Cramer, G.R. 2002. Sodium-calcium interactions under salinity stress. In A. L?uchli and U. L?ttge: Salinity: Environment-plants-molecules. 205?227 pp. Springer, Dordrecht.
DOI: 10.1007/0-306-48155-3_10View Article Google Scholar

De Pascale, S., C. Ruggiero, G. Barbieri, A. Maggio. 2003. Physiological responses of pepper to salinity and drought. J. Am. Soc. Hortic. Sci. 128(1): 48?54.
DOI: 10.21273/JASHS.128.1.0048View Article Google Scholar

Dobbelaere, S., J. Vanderleyden, Y. Yaacov Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizospher. Crit. Rev. Plant Sci. 22(2):107?149.
DOI: 10.1080/713610853View Article Google Scholar

Egamberdieva, D. 2013. The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: M. Miransari (eds.) Biotechnological Techniques of Stress Tolerance in Plants. Studium, Houston, TX, 21?39.

Egamberdieva, D. and G. H?flich. 2003. Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35(7): 973?978.
DOI: 10.1016/S0038-0717(03)00158-5View Article Google Scholar

Ekinci, M., E. Y?ld?r?m, A. Dursun, N.S. Mohamedsrajaden. 2019. Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling. Yuzuncu Yil Univ. J. Agric. Sci. 29(2): 290?299.

Esring?, A., D, Kaynar, M. Turan, S. Ercisli. 2016. Ameliorative Effect of Humic Acid and Plant Growth-Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress. Commun. in Soil Sci. Plant Anal. 47(5): 602–618
DOI: 10.1080/00103624.2016.1141922View Article Google Scholar

Flowers, T.J., M.A. Hajibagheri, A.R. Yeo. 1991. Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for Oertli hypothesis. PPlant Cell Environ. 14(3): 319?325.
DOI: 10.1111/j.1365-3040.1991.tb01507.xView Article Google Scholar

Foolad, M.R., G.Y. Lin, F.Q. Chen. 1999. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118(2): 167?173.
DOI: 10.1046/j.1439-0523.1999.118002167.xView Article Google Scholar

Ghanem, M.E., A. Albacete, C. Mart?nez-And?jar, M. Acosta, R. Romero-Aranda, I.C. Dodd, S. Lutts, F. P?rez-Alfocea. 2008. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J. Exp. Bot. 59(11): 3039?3050.
DOI: 10.1093/jxb/ern153View Article Google Scholar

Glick, B.R., D.M. Penrose, J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190(1): 63?68.
DOI: 10.1006/jtbi.1997.0532View Article Google Scholar

Grichko, V.P., B.R. Glick. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39(1): 11?17.
DOI: 10.1016/S0981-9428(00)01212-2View Article Google Scholar

Gunes, A., A. Inal, M. Alpaslan. 1996. Effect of salinity on stomatal resistance, proline and mineral composition of pepper. J. Plant Nutr. 19(2): 359?396.
DOI: 10.1080/01904169609365129View Article Google Scholar

Gunes, A., K. Karagoz, M. Turan, R. Kotan, E. Yildirim, R. Cakmakci, F. Sahin. 2015. Fertilizer efficiency of some plant growth promoting rhizobacteria for plant growth. Research J. Soil Biol. 7(2): 28?45.
DOI: 10.3923/rjsb.2015.28.45View Article Google Scholar

Gutierrez Ma?ero, F.J., B. Ramos, A. Probanza, J. Mehouachi, F.R. Tadeo, M. Tal?n. 2001. The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111(2): 206?211.
DOI: 10.1034/j.1399-3054.2001.1110211.xView Article Google Scholar

Hahm, M.S., J.S. Son, Y.J. Hwang, D.K. Kwon, S.Y. Ghim, 2017. Alleviation of salt stress in pepper (Capsicum annum l.) plants by plant growth-promoting rhizobacteria. J. Microbiol. Biotechnol. 27(10): 1790?1797
DOI: 10.4014/jmb.1609.09042View Article Google Scholar

Han, H.S. and K.D. Lee. 2005. Plant growth promoting rhizobacteria. Effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res. J. Agric. & Biol. Sci. 1: 210?215.

Hand, M.J., V.D. Taffouo, A.E. Nouck, K.P.J. Nyemene, L.B. Tonfack, T.L. Meguekam, E. Youmbi. 2017. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45(2): 481?490.
DOI: 10.15835/nbha45210928View Article Google Scholar

Hasegawa, P.M., R.A. Bressan, J.K. Zhu, H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physio. & Plant Mol. Biol. 51(1): 463?499.

Houimli, S.I.M., M. Denden, B.D. Mouhandes. 2010. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian J. Biosci. 4: 96?104.
DOI: 10.5053/ejobios.2010.4.0.12View Article Google Scholar

Houimli, S.I.M., M. Denden, S.B. El Hadj. 2008. Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. EurAsian J. Biosci. 2: 83?90.

Hussein, M.M., S.Y. El-Faham, A.K. Alva. 2012. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water. Agric. Sci. 3(2): 241?248.
DOI: 10.4236/as.2012.32028View Article Google Scholar

Jaleel, C., B. Sankar, R. Sridharan, R. Panneerselvam. 2008. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol. 32: 79?83.

Jamal, Q., L. Seong, J. Deok, K. Young. 2018. Effect of plant growth-promoting bacteria Bacillus amylliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Prot. Sci. 54(3): 129?137.
DOI: 10.17221/154/2016-PPSView Article Google Scholar

Jia, W., Y. Wang, S. Zhang, J. Zhang. 2002. Salt?stress?induced ABA accumulation is more sensitively triggered in roots than in shoots. J. Exp. Bot. 53(378): 2201?2206.
DOI: 10.1093/jxb/erf079View Article Google Scholar

Kaouther, Z., B.F. Mariem, M. Fardaous, H., Cherif. 2012. Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.). J. Stress Physiol. Biochem. 8(4): 236?252.

Karlidag, H., A. Esitken, E. Yildirim, M.F. Donmez, M. Turan. 2011. Effects of plant growth promoting bacteria (PGPB) on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions. J. Plant Nutr. 34(1): 34?45.
DOI: 10.1080/01904167.2011.531357View Article Google Scholar

K?ran, S., S. Kusvuran, C. Ates, K. S?nmez, S. Ellialtioglu. 2018. Morphological characteristics and ion concentrations of grafted and non-grafted eggplant seedlings under drought and salt stress. J. Anim. Plant Sci. 28(6): 1755?1765.

Kishor, P.K., S. Sangam, R.N. Amrutha, P.S. Laxmi, K.R. Naidu, K.S. Rao, K.J. Reddy, P. Theriappan, N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. 88(3): 424?438.

Kohler, J., F. Caravaca, A. Rold?n. 2010. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 42(3): 429?434.
DOI: 10.1016/j.soilbio.2009.11.021View Article Google Scholar

Kohler, J., J.A. Hern?ndez, F. Caravaca, A. Rold?n. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 65(2-3): 245?252.
DOI: 10.1016/j.envexpbot.2008.09.008View Article Google Scholar

Kuraishi, S., K. Tasaki, N. Sakurai, K. Sadatoku. 1991. Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant Cell Physiol. 32(5): 585?591.
DOI: 10.1093/oxfordjournals.pcp.a078120View Article Google Scholar

Kusvuran, S., S. Ellialtioglu, K. Abak, F. Yasar. 2007. Responses of some melon (Cucumis sp.) genotypes to salt stress. J. Agric. Sci. 13(2): 395?404.
DOI: 10.15740/HAS/IJAS/13.2/242-248View Article Google Scholar

Lichtenthaler, H. and A.R. Wellburm. 1983. Determination of toplam carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11(5): 591–593.
DOI: 10.1042/bst0110591View Article Google Scholar

Lim, C.S., S.M. Kang, J.L. Cho, K.C. Gross. 2009. Antioxidizing enzyme activities in chilling-sensitive and chilling-tolerant pepper fruit as affected by stage of ripeness and storage temperature. J. Am. Soc. Hortic. Sci. 134(1): 156?163.
DOI: 10.21273/JASHS.134.1.156View Article Google Scholar

Lucy, M., E. Reed, B.R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86(1): 1?25.
DOI: 10.1023/B:ANTO.0000024903.10757.6eView Article Google Scholar

Maas, E.V. 1986. Salt tolerance of plants. J. Appl. Agric. Res. 1(1): 12?25.

Machado, R.M.A. and R.P. Serralheiro. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2): 30.
DOI: 10.3390/horticulturae3020030View Article Google Scholar

Mansour, M. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43(4): 491?500.
DOI: 10.1023/A:1002873531707View Article Google Scholar

Marschner, H. 2012. Mineral Nutrition of Higher Plants. Academic Press, London.

Mayak, S., T. Tirosh, B.R. Glick. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Sci. 166(2): 525?530.
DOI: 10.1016/j.plantsci.2003.10.025View Article Google Scholar

Mehta, S. and C.S. Nautiyal. 2001. An efficient method for qualitative screening of phosphatesolubilizing bacteria. Curr. Microbiol. 43(1): 51?56.
DOI: 10.1007/s002840010259View Article Google Scholar

Mertens, D. 2005a. Plants preparation of laboratory sample. In: W. Horwitz and G.W. Latimer, (eds.). Official Methods of Analysis, 18th. Gaithersburg, MD, USA, AOAC, 1?2.

Mertens, D. 2005b. Metal in plants and pet foods. In: W. Horwitz and G.W. Latimer, (eds.). Official Methods of Analysis, 18th. Gaithersburg, MD, USA, AOAC, 3?4.

Mukhopadhyay, R., B. Sarkar, H. S. Jat, P. C. Sharma and N. S. Bolan. 2020. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manage. 280: 111736.
DOI: 10.1016/j.jenvman.2020.111736View Article Google Scholar

Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59(1): 651?681.
DOI: 10.1146/annurev.arplant.59.032607.092911View Article Google Scholar

Navarro, J., C. Garrido, M. Carvajal, V. Martinez. 2002. Yield and fruit quality of pepper plants under sulphate and chloride salinity. J. Hortic. Sci. Biotechnol. 77(1): 52–57
DOI: 10.1080/14620316.2002.11511456View Article Google Scholar

Ozdemir, B., Z.O. Tanyola?, K. Ulukap?, A.N. Onus. 2016. Evaluation of salinity tolerance level of some pepper (Capsicum annuum L.) cultivars. Inter J Agric Innov Res, 5:1473?2319.

Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effect on plants: a review. Ecotoxicol. Environ. Saf. 60(3): 324?349.
DOI: 10.1016/j.ecoenv.2004.06.010View Article Google Scholar

Parwaiz, A. and S. Satyawati. 2008. Salt stress and phytobiochemical responses of plants - a review. Plant Soil Environ. 54(3): 89?99.
DOI: 10.17221/2774-PSEView Article Google Scholar

Penella, C., M. Landi, L. Guidi, S.G. Nebauer, E. Pellegrini, A. San Bautista, D. Remorini, C. Nali, S. L?pez-Galarza, A. Calatayud. 2016. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J Plant Physio. 193: 1?11.
DOI: 10.1016/j.jplph.2016.02.007View Article Google Scholar

P?rez-L?pez, U., A. Robredo, M. Lacuesta, A. Mena-Petite, A. Mu?oz-Rueda. 2009. The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environ. Exp. Bot. 66(3): 463?470.
DOI: 10.1016/j.envexpbot.2009.03.007View Article Google Scholar

Pieterse, C., J. Van Pelt, B. Verhagen, J. Ton, A.C.M. Wees, K.M. L?on-Kloosterziel, L.C. Loon. 2003. Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35: 39?54. Pi?ero, M.C., F. Houdusse, J. M. Garcia-Mina, M. Garnica, F.M. del Amor. 2014. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration. Physio. Plant. 151(4): 375?389.
DOI: 10.1111/ppl.12119View Article Google Scholar

Sahin, U., M. Ekinci, S. Ors, M. Turan, S. Yildiz, E. Yildirim. 2018. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic. 240: 196?204.
DOI: 10.1016/j.scienta.2018.06.016View Article Google Scholar

Sairam, R.K., K.V. Rao, G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163(5): 1037?1046.
DOI: 10.1016/S0168-9452(02)00278-9View Article Google Scholar

Samanc?o?lu, A. and E. Y?ld?r?m. 2015. Bitki geli?imini te?vik eden bakteri uygulamalar?n?n bitkilerde kurakl??a tolerans? artt?rmadaki etkileri. Mustafa Kemal ?niversitesi, Ziraat Fak?ltesi Dergisi 20(1): 72?79.

Samanc?o?lu, A., E. Yildirim, M. Turan, R. Kotan, U. Sahin. 2016. Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of cabbage seedlings by Plant Growth Promoting Rhizobacteria. Int. J. Agric. Biol. 18(5): 948?956.
DOI: 10.17957/IJAB/15.0195View Article Google Scholar

S?nchez, F., J. Manzanares Ma, E.F. de Andres, J. L. Tenorio, L. Ayerbe. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res. 59(3): 225?235
DOI: 10.1016/S0378-4290(98)00125-7View Article Google Scholar

Santner, A. and M. Estelle. 2009. Recent advances and emerging trends in plant hormone signalling. Nature 459(7250): 1071.
DOI: 10.1038/nature08122View Article Google Scholar

Schwabe, K.A., I. Kan and K.C. Knapp. 2006. Drainwater management for salinity mitigation in irrigated agriculture. Am. J. Agric. Econ. 88(1): 133?149.
DOI: 10.1111/j.1467-8276.2006.00843.xView Article Google Scholar

Shams, M. and E. Yildirim. 2020. Variations in response of CaPAO and CaATG8c genes, hormone, photosynthesis and antioxidative system in pepper genotypes under salinity stress, Sci. Hortic. 282: 110041.

Shams, M., M. Ekinci, S. Ors, M. Turan, G. Agar, R. Kul, E. Y?ld?r?m. 2019. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol. Mol. Biol. Plants 25(5): 1149?1161.
DOI: 10.1007/s12298-019-00692-2View Article Google Scholar

Shannon, M.C. and C.M. Grieve. 1999. Tolerance of vegetables tosalinity. Sci. Hortic. 78(1-4): 5?38.
DOI: 10.1016/S0304-4238(98)00189-7View Article Google Scholar

Shantharam, S. and A.K. Mattoo. 1997. Enhancing biological nitrogen fixation: An appraisal of current and alternative technologies for N input into plants. In: J.K. Ladha, F.J. de Bruijn, K.A. Malik (eds) Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Developments in Plant and Soil Sciences, vol 75. 205?216 pp. Springer, Dordrecht.
DOI: 10.1007/978-94-011-7113-7_20View Article Google Scholar

Shrivastava, P. and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22(2): 123?131.
DOI: 10.1016/j.sjbs.2014.12.001View Article Google Scholar

Siddikee, A., B. Glick, P. Chauhan, W. Jong Yim, T. Sa, 2011. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1- aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol. Biochem. 49(4): 427?434.
DOI: 10.1016/j.plaphy.2011.01.015View Article Google Scholar

Suarez, D.L. 2010. Soil salinization and management options for sustainable crop production. In: M. Pessaralki (eds.). Handbook of Plant and Crop Stress. pp. 41–54. Boca Raton, FL: CRC Press
DOI: 10.1201/b10329-5View Article Google Scholar

Sudhakar, C., P.S. Reddy, K. Veeranjaneyulu. 1993. Effect of salt stress on the enzymes of proline synthesis and oxidation in greengram (Phaseolus aureus Roxb.) seedlings. J. Plant Physio. 141(5): 621?623.
DOI: 10.1016/S0176-1617(11)80466-9View Article Google Scholar

Suriyan, C.U. and K. Chalermpol. 2009. Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak. J. Bot. 41: 87?98.

Timmusk, S. and G.H. Wagner. 1999. The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12(11): 951?959.
DOI: 10.1094/MPMI.1999.12.11.951View Article Google Scholar

Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Meth. Enzymol. 428: 419?438.
DOI: 10.1016/S0076-6879(07)28024-3View Article Google Scholar

Velikova, V., I. Yordanov, A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid raintreated bean plants: protective role of exogenous polyamines. Plant Sci. 151(1): 59?66.
DOI: 10.1016/S0168-9452(99)00197-1View Article Google Scholar

Wang, W., Z. Wu, Y. He, Y. Huang, X. Li, B.C. Ye. 2018. Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicol. Environ. Saf. 164:520?529.
DOI: 10.1016/j.ecoenv.2018.08.070View Article Google Scholar

Yildirim, E. and I. Guvenc. 2006. Salt tolerance of pepper cultivars during germination and seedling growth. Turk. J. Agric. For. 30(5): 347?353.

Yildirim, E., M. Turan, M. Ekinci, A. Dursun, A. Gunes, M.F. Donmez. 2015. Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Rom. Biotechnol. Lett. 20(6): 10929?10935.

Yildirim, E., M. Turan, M. Ekinci, A. Dursun, R. Cakmakci. 2011. Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci. Res. Essays 6(20): 4389?4396.
DOI: 10.5897/SRE11.219View Article Google Scholar

Yildirim, E., M. Turan, M.F. D?nmez. 2008. Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Bucharest University Roumanian Society of Biological Sciences 13(5): 3933?3943.

Zhang, X.M., Z.H. Zhang, X.Z. Gu, S.L. Mao, X.X. Li, J. Chad?uf, A. Palloix, L. Wang, B.X. Zhang. 2016. Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution. J. Integr. Agric. 15(9): 1991?2001.
DOI: 10.1016/S2095-3119(16)61364-3View Article Google Scholar