Research Paper

Metamorphic strategies of the Indian rice frog, Fejervarya limnocharis, in response to irrigation regimes

Shu-Hui Kuan

Published on: 25 October 2016

Page: 271 - 278

DOI: 10.6165/tai.2016.61.271

Abstract

Organisms gain benefits from phenotypic plasticity by possessing traits better cope with environmental variations. Although cohort-dependent life-history strategy may be ubiquitous in amphibians, it is rarely studied. I investigated whether Indian rice frog, Fejervarya limnocharis, populations from cultivated fields with different irrigation regimes have differential cohort-dependent metamorphic strategies. I tested the hypothesis that populations inhabiting temporally disrupted breeding habitats would, while populations inhabiting temporally constant breeding habitats would not show cohort-dependent metamorphic strategies in response to seasonal temperature variation. I assessed cohort-dependent strategies by comparing metamorphic weight, age, and growth rate between spring and summer cohorts in response to low and high temperatures in a factorial common garden experiment. The results showed that the plasticity of metamorphic weight and age were both very extensive in the Indian rice frog. Tadpoles from disrupted irrigation (rice paddy) populations had cohort-dependent metamorphic strategies. In contrast, tadpoles from constant irrigation (water bamboo field) populations did not show cohort-dependent metamorphic strategies. More research on cohort-dependent life-history traits is badly needed to further our understanding the evolution of life history strategies.

Keyword: Irrigation, Life-history strategy, Metamorphosis, Plasticity, Rice paddy, Water bamboo field

Literature Cited

Alexander, P.S., A.C. Alcala and D.Y. Wu. 1979. Annual reproductive pattern in the rice frog Rana limnocharis in Taiwan. Journal of Asian Ecology 1: 68

Altwegg, R. and H.-U. Reyer. 2003. Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57(4): 872
DOI: 10.1554/0014-3820(2003)057[0872:PONSOS]2.0.CO;2View Article Google Scholar

Alvarez, D. and A.G. Nicieza. 2002. Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16(5): 640
DOI: 10.1046/j.1365-2435.2002.00658.xView Article Google Scholar

Atkinson, D. 1996. On the solutions to a major life-history puzzle. Oikos 77(2): 359
DOI: 10.2307/3546078View Article Google Scholar

Beck, C.W. and J.D. Congdon. 2000. Effects of age and size at metamorphosis on performance and metabolic rates of southern toad, Bufo terrestris, metamorphs. Funct. Ecol. 14(1): 32
DOI: 10.1046/j.1365-2435.2000.00386.xView Article Google Scholar

Berven, K.A., D.E. Gill and S.J. Smith-Gill. 1979. Countergradient selection in the green frog, Rana clamitans. Evolution 33(2): 609
DOI: 10.2307/2407784View Article Google Scholar

Berven, K.A. and D.E. Gill. 1983. Interpreting geographic variation in life-history traits. Am. Zool. 23(1): 85
DOI: 10.1093/icb/23.1.85View Article Google Scholar

Blouin, M.S. and S.T. Brown. 2000. Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. Oecologia 125(3): 358
DOI: 10.1007/s004420000458View Article Google Scholar

Cabrera-Guzman, E., M.R. Crossland, G.P. Brown and R. Shine. 2013. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLOS ONE 8(7), e70121.
DOI: 10.1371/journal.pone.0070121View Article Google Scholar

Casta?eda, L.E., P. Sabat, S.P. Gonzalez and R.F. Nespolo. 2006. Digestive plasticity in tadpoles of the Chilean giant frog (Caudiverbera caudiverbera): factorial effects of diet and temperature. Physiol. Biochem. Zool. 79(5): 919
DOI: 10.1086/506006View Article Google Scholar

Chuang, M.F.A. 2006. Oerwintering tadpoles of Rana adenopleura in a subtropical lowland of Taiwan. Master's thesis, National Changhua University of Education, Changhua, Taiwan.

Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183

Harkey, G.A. and R.D. Semlitsch. 1988. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1988(4): 1001
DOI: 10.2307/1445724View Article Google Scholar

Hsu, J.-L., Y.-C. Kam and G.M. Fellers. 2012. Overwintering tadpoles and loss of fitness correlates in Polypedates braueri tadpoles that use artificial pools in a lowland agroecosystem. Herpetologica 68(2): 184
DOI: 10.1655/HERPETOLOGICA-D-11-00042.1View Article Google Scholar

Kaplan, R.H. and Phillips, C.P. 2006. Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis. Evolution 60(1): 142
DOI: 10.1554/05-327R.1View Article Google Scholar

Kingsolver, J.G. and R.B. Huey. 2008. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10: 251

Kuan, S.-H. and Y.K. Lin. 2011. Bigger or faster? Spring and summer tadpole cohorts use different life-history strategies. J. Zool. 285(3): 165
DOI: 10.1111/j.1469-7998.2011.00836.xView Article Google Scholar

Kuan, S.-H. 2016. Divergent life-history strategies of temporal cohorts of Indian rice frogs (Fejervarya limnocharis) in the two-crops rice fields in Taiwan. Dissertation, National Taiwan University, Taipei, Taiwan.

Lai, S.-J., Y.-C. Kam, F.-H. Hsu and Y.-S. Lin. 2002. Elevational effects on the growth and development of tadpoles of Sauter's frog, Rana suteri Boulenger, in Taiwan. Acta Zoologica Taiwanica 13(1): 11
DOI: 10.6576/AZT.2002.13.(1).2View Article Google Scholar

Laugen, A.T., A. Laurila, K. R?s?nen and J. Meril?. 2003. Latitudinal countergradient variation in the common frog (Rana temporaria) development rates
DOI: 10.1046/j.1420-9101.2003.00560.xView Article Google Scholar

Liess, A., O. Rowe, J. Guo, G. Thomsson and M.I. Lind. 2013. Hot tadpoles from cold environments need more nutrients
DOI: 10.1111/1365-2656.12107View Article Google Scholar

Lind, M.I. and F. Johansson. 2007. The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J. Evolution. Biol. 20(4): 1288
DOI: 10.1111/j.1420-9101.2007.01353.xView Article Google Scholar

Lind, M.I. 2009. Phenotypic plasticity and local adaptation in an island system of Rana temporaria. Dissertation, Ume? University, Ume?, Sweden.

Merila, J., A. Laurila, A.T. Laugen and K. Rasanen. 2004. Heads or tails?

Miner, B.G., S.E. Sultan, S.G. Morgan, D.K. Padilla and R.A. Relyea. 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20(12): 685
DOI: 10.1016/j.tree.2005.08.002View Article Google Scholar

Mogali, S.M., S.K. Saidapur and B.A. Shanbhag. 2011. Receding water levels hasten metamorphosis in the frog, Sphaerotheca breviceps (Schneider, 1799): a laboratory study. Curr. Sci. India 101: 1219

Morey, S. and D. Reznick. 2001. Effects of larval density on postmetamorphic spadefoot toads (Spea hammondii). Ecology 82(2): 510
DOI: 10.1890/0012-9658(2001)082[0510:EOLDOP]2.0.CO;2View Article Google Scholar

Newman, R.A. 1988. Adaptive plasticity in development of Scaphiopus couchii tadpoles in desert ponds. Evolution 42(4): 774
DOI: 10.2307/2408868View Article Google Scholar

Newman, R.A. and A.E. Dunham. 1994. Size at metamorphosis and water loss in a desert anuran (Scaphiopus couchii). Copeia 1994(2): 372
DOI: 10.2307/1446984View Article Google Scholar

Pigliucci, M. 2001. Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore.

Pough, F.H. and S. Kamel. 1984. Post-metamorphic change in activity metabolism of anurans in relation to life history. Oecologia 65(1): 138
DOI: 10.1007/BF00384476View Article Google Scholar

Relyea, R.A. 2007. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152(3): 389
DOI: 10.1007/s00442-007-0675-5View Article Google Scholar

Schlichting, C.D. and M. Pigliucci. 1998. Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland, Massachusetts, USA.

Sinsch, U. 1988. Temporal spacing of breeding activity in the natterjack toad, Bufo calamita. Oecologia 76(3): 399
DOI: 10.1007/BF00377035View Article Google Scholar

Stahlberg, F., M. Olsson and T. Uller. 2001. Population divergence of developmental thermal optima in Swedish common frogs, Rana temporaria. J. Evolution. Biol. 14(5): 755
DOI: 10.1046/j.1420-9101.2001.00333.xView Article Google Scholar

Watkins, T.B. and Vraspir, J. 2006. Both incubation temperature and posthatching temperature affect swimming performance and morphology of wood frog tadpoles (Rana sylvatica). Physiol. Biochem. Zool. 79(1): 140
DOI: 10.1086/498182View Article Google Scholar

Wells, K.D. 2007. Complex life cycles and the ecology of amphibian metamorphosis. In: Wells, K.D. (ed.), The ecology and behavior of amphibians. The University of Chicago Press, Chicago, USA. pp. 559