Research Paper

Rhizobia symbiosis of seven leguminous species growing along Xindian riverbank of Northern Taiwan

Cheng-Tai Huang, Chi-Te Liu and Wen-Yuan Kao

Published on: 04 January 2018

Page: 7 - 15

DOI: 10.6165/tai.2018.63.7

Abstract

Legume-rhizobia symbioses of seven leguminous species growing along Xindian riverbank of Northern Taiwan were investigated in this study. These legumes form either determinate or indeterminate types of root nodules. The determinate nodules of Alysicarpus vaginalis, Desmodium. triflorum, D. heterophyllum, Sesbania cannabina and the indeterminate nodules of Mimosa pudica harbored bacteroids of morphological uniformity (length of 1-3 μm), while the indeterminate nodules of Crotalaria zanzibarica and Trifolium repens contained bacteroids of highly pleomorphism (size varying from 1 to 5 μm). The enclosed bacteria were isolated from respective nodules, and twenty slow-growing and nine fast-growing rhizobial isolates were recovered. The slow-growing isolates were classified to the genus Bradyrhizobium based on the 16S rRNA sequences, whereas the fast-growing rhizobia comprise four genera, Neorhizobium, Rhizobium, Cupriavidus and Paraburkholderia. Results of stable isotope analyses revealed that the seven leguminous species had similar and consistently negative δ15N values in leaves (mean of -1.2 ‰), whereas the values were positive (varying from 3.7 to 7.3 ‰) in the nodules. These values were significantly higher in the indeterminate nodules than those in the determinate ones. In addition, variations in the values of leaf δ13C (varying from -29 to -34‰) among the seven legumes were measured, indicating their photosynthetic water use efficiencies were different. This is the first field survey to report the rhizobial diversity and the nutrient relationships of sympatric legume in Taiwan.

Keyword: Legume-rhizobia symbiosis, 16S rRNA gene, Stable nitrogen and Carbon isotope ratios

Literature Cited

Adams, M.A., T.L. Turnbull, J.I. Sprent and N. Buchmann. 2016. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl. Acad. Sci. 113(15):4098-4103.
DOI: 10.1073/pnas.1523936113View Article Google Scholar

Azevedo, H., F.M. Lopes, P.R. Silla and M. Hungria. 2015. A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics 16(Suppl 5):S10.
DOI: 10.1186/1471-2164-16-S5-S10View Article Google Scholar

Barrett, C.F. and M.A. Parker. 2005. Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst. Appl. Microbiol. 28(1):57-65.
DOI: 10.1016/j.syapm.2004.09.002View Article Google Scholar

Bergersen, F.J., G.L. Turner, N. Amarger, F. Mariotti and A. Mariotti. 1986. Strain of Rhizobium lupini determines natural abundance of 15N in root nodules of Lupinus spp. Soil Biol. Biochem. 18(1):97-101.
DOI: 10.1016/0038-0717(86)90109-4View Article Google Scholar

Bergersen, F.J., M.B. Peoples and G.L. Turner. 1988. Isotopic discrimination during the accumulation of nitrogen by soybeans. Aust. J. Plant Physiol. 15(3):407-420.
DOI: 10.1071/PP9880407View Article Google Scholar

Brueck, H. 2008. Effects of nitrogen supply on water-use effeciency of higher plants. J. Plant Nutr. Soil Sci. 171(2):210-219.
DOI: 10.1002/jpln.200700080View Article Google Scholar

Chen, W.-M., T.-M. Lee, C.-C. Lan and C.-P. Cheng. 2000. Characterization of halotolerant rhizobia isolated from root nodules of Canavalia rosea from seaside areas. FEMS Microbiol. Ecol. 34(1):9-16.
DOI: 10.1016/S0168-6496(00)00069-6View Article Google Scholar

Chen, W.-M. and T.-M. Lee. 2001. Genetic and phenotypic diversity of rhizobial isolates from sugarcane-Sesbania cannabina-rotation fields. Biol. Fertil. Soils 34(1):14-20.
DOI: 10.1007/s003740100346View Article Google Scholar

Chen, W.-M., L. Moulin, C. Bontemps, P. Vandamme, G. Bena and C. Boivin-Masson. 2003. Legume symbiotic nitrogen fixation by
DOI: 10.1128/JB.185.24.7266-7272.2003View Article Google Scholar

Chen, W.-M., E.K. James, J.-H. Chou, S.-Y. Sheu, S.-Z. Yang and J.I. Sprent. 2005. Beta-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol. 168(3):661-675.
DOI: 10.1111/j.1469-8137.2005.01533.xView Article Google Scholar

Doyle, J. J. 2011 Phylogenetic perspectives on the origins of nodulation. Mol. Plant-Microbe Interactions 24(11):1289-1295.
DOI: 10.1094/MPMI-05-11-0114View Article Google Scholar

Ehleringer, J.R. and C.B. Osmond. 1989. Stable Isotopes. In: Pearcy, R. W., J. Ehleringer, H. A. Mooney, and P.W. Rundel (eds). Plant Physiological Ecology. Field Methods and Instrumentation. Chapman and Hall, New York. pp. 281-300

Farquhar, G.D., M.H. O'Leary and J.A. Berry. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9(2):121-137.
DOI: 10.1071/PP9820121View Article Google Scholar

Haag, A.F., M.F.F. Arnold, K.K. Myka, B. Kerscher, S. Dall'Angelo, M. Zanda, P. Mergaert and G.P. Ferguson. 2013. Molecular insights into bacteroid development during Rhizobium
DOI: 10.1111/1574-6976.12003View Article Google Scholar

Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98.

Huang, T.-C. 1993. Flora of Taiwan, vol. 3. 2nd edn. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan.

Huang, C.-T., C.-T. Liu, S.-J. Chen and W.-Y. Kao. 2016. Phylogenetic identification, phenotypic variation and symbiotic characteristics of a peculiar rhizobium, strain CzR2, isolated from Crotalaria zanzibarica in Taiwan. Microbes Environ. 31(4):410-417.
DOI: 10.1264/jsme2.ME16063View Article Google Scholar

Hung, M.-H., A.A. Bhagwath, F.-T. Shen, R.P. Devasya and C.-C. Young. 2005. Indigenous rhizobia associated with native shrubby legumes in Taiwan. Pedobiologia 49(6):577-584.
DOI: 10.1016/j.pedobi.2005.06.002View Article Google Scholar

Kao, W.-Y. 2010.
DOI: 10.6165/tai.2010.55(1).54View Article

Lewis, G., B. Schrire, B. Mackinder and M. Lock. 2005. Legumes of the world. London: Royal Botanic Gardens Kew.

Liu, X.Y., E.T. Wang, Y. Li and W.X. Chen. 2007. Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in the subtropical regions of China. Arch. Microbiol. 188(1):1-14.
DOI: 10.1007/s00203-007-0209-xView Article Google Scholar

Marchesi, J.R., T. Sato, A.J. Weightman, T.A. Martin, J.C. Fry, S.J. Hiom and W.G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64:795-799.

Mergaert, P., T. Uchiumi, B. Alunni, G. Evanno, A. Cheron, O. Catrice, A.-E. Mausset, F. Barloy-Hubler, F. Galibert, A. Kondorosi and E. Kondorosi. 2006. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium
DOI: 10.1073/pnas.0600912103View Article Google Scholar

Mousavi, S.A., J. ?sterman, N. Wahlberg, X. Nesme, C. Lavire, L. Vial, L. Paulin, P.d. Lajudie and K. Lindstr?m. 2014. Phylogeny of the Rhizobium
DOI: 10.1016/j.syapm.2013.12.007View Article Google Scholar

O'Leary, M.H. 1988. Carbon isotopes in photosynthesis. BioScience 38:328-336.
DOI: 10.2307/1310735View Article Google Scholar

Oono, R., R.F. Denison and E.T. Kiers. 2009. Controlling the reproductive fate of rhizobia: how universal are legume sanctions? New Phytol. 183(4):967-979.
DOI: 10.1111/j.1469-8137.2009.02941.xView Article Google Scholar

Oono, R. and R.F. Denison. 2010. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiol. 154(3):1541-1548.
DOI: 10.1104/pp.110.163436View Article Google Scholar

Oono, R., I. Schmitt, J.I. Sprent and R.F. Denison. 2010. Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol. 187(2):508-520.
DOI: 10.1111/j.1469-8137.2010.03261.xView Article Google Scholar

Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18(1):293-320.
DOI: 10.1146/annurev.ecolsys.18.1.293View Article Google Scholar

Rivas, R., M. Martens, P.d. Lajudie and A. Willem. 2009. Multilocus sequence analysis of the genus Bradyrhizobium. Syst. Appl. Microbiol. 32(2):101-110.
DOI: 10.1016/j.syapm.2008.12.005View Article Google Scholar

Robinson, D. 2001.
DOI: 10.1016/S0169-5347(00)02098-XView Article

Sawana, A., M. Adeolu and R.S. Gupta. 2014. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front. Genet. 5:1-22.
DOI: 10.3389/fgene.2014.00429View Article Google Scholar

Shearer, G., D. Kohl and J.E. Harper. 1980. Distribution of 15N among plant parts of nodulating and non-nodulating isolines of soybeans. Plant Physiol. 66(1):57-60.
DOI: 10.1104/pp.66.1.57View Article Google Scholar

Shearer, G., L. Feldman, B.A. Bryan, J.l. Skeeters, D.H. Kohl, N. Amarger, F. Mariotti and A. Mariotti. 1982. 15N abundance of nodules as an indicator of N metabolism in N2-fixing plants. Plant Physiol. 70(2):465-465.
DOI: 10.1104/pp.70.2.465View Article Google Scholar

Sprent, J.I., I.E. Geoghegan, P.W. Whitty and E.K. James. 1996. Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia 105(4):440-446.
DOI: 10.1007/BF00330006View Article Google Scholar

Sprent, J.I. 2001. Nodulation in legumes. London: Royal Botanic Gardens Kew.

Sprent, J.I. 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174(1):11-25
DOI: 10.1111/j.1469-8137.2007.02015.xView Article Google Scholar

Sprent, J.I. 2009. Legume nodulation: a global perspective. Wiley-Blackwell,Oxford, United Kingdom
DOI: 10.1002/9781444316384.ch3View Article Google Scholar

Steele, K. W., P. M. Bonish, R. M. Daniel and G. W. O'Hara. 1983. Effect of rhizobial strain and host plant on nitrogen isotopic fractionation in legumes. Plant Physiol. 72(4):1001-1004.
DOI: 10.1104/pp.72.4.1001View Article Google Scholar

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12):2725-2729.
DOI: 10.1093/molbev/mst197View Article Google Scholar

Vincent, J.M. 1970 A manual for the practical study of the root-nodule bacteria., International biological programme handbook 15. Blackwell Scientific Publications, Oxford, United Kingdom.
DOI: 10.1002/iroh.19700550415View Article Google Scholar

Virginia, R.A. and C.C. Delwiche. 1982. Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54(3):317-325.
DOI: 10.1007/BF00380000View Article Google Scholar

Vitousek, P.M., K. Cassman, C. Cleveland, T. Crews, C.B. Field, N.B. Grimm, R.W. Howarth, R. Marino, L. Martinelli, E.B. Rastetter and J.I. Sprent. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1-45.
DOI: 10.1023/A:1015798428743View Article

Vitousek, P.M. and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13(2):87-115.
DOI: 10.1007/BF00002772View Article Google Scholar

Wanek, W. and S. Arndt. 2002. Difference in delta(15)N signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N(2) fixation to plant N. J. Exp. Bot. 53(371):1109-1118.
DOI: 10.1093/jexbot/53.371.1109View Article Google Scholar

Werth, M. and Y. Kuzyakov. 2010. 13C fractionation at the root-microorganisms-soil interface: A review and outlook for partitioning studies. Soil Biol. Biochem. 42(9):1372-1384.
DOI: 10.1016/j.soilbio.2010.04.009View Article Google Scholar

Wu, S.-H., S.-M. Chaw and M. Rejm?nek. 2003. Naturalized Fabaceae (Leguminosae) species in Taiwan: the first approximation. Bot. Bull. Acad. Sin. 44:59-66.

Yoneyama, T., T. Uchiyama and J. Yazaki. 1991. Ontogenetic change of nitrogen accumulation and natural 15N abundance in pea and faba bean with special reference to estimate of N2 fixation and 15N enrichment of nodules. J. Mass Spectrom. Soc. Jpn. 39(5):267-276.
DOI: 10.5702/massspec.39.267View Article Google Scholar