Research Paper

Pollination ecology of Bidens pilosa L. (Asteraceae)

Usharani Budmajji and Aluri Jacob Solomon Raju

Published on: 30 April 2018

Page: 89 - 100

DOI: 10.6165/tai.2018.63.89

Abstract

Information on pollination ecology is essential to understand the sexual reproduction in Bidens pilosa L. The study is aimed at providing details of sexual system, breeding system, pollination mechanism, pollinators, seed dispersal modes and germination aspects B. pilosa based mostly on field study. Paper chromatography technique was used for recording sugar and amino acid types in the nectar since they are important to evaluate the pollination syndrome. The study indicates that B. pilosa displays vegetative, flowering and fruiting phases throughout the year. The plant produces heterogamous capitula with all ray florets opening on the first day and disc florets opening on the next four consecutive days. The ray florets are sterile while disc florets are fertile, dichogamous, protandrous, herkogamous, self-compatible, self-pollinating (vector-mediated) and facultative xenogamous. The disc florets display secondary pollen presentation. The tubate corolla, production of sucrose-rich nectar with essential and non-essential amino acids, and tri-colporate, echinate tri-colpate pollen grains in disc florets suggest entomophily. The plant is accordingly entomophilous but principally psychophilous. Disc florets produce non-dormant, long and short cypselas from the same capitulum. Seed dispersal is polychorous involving anemochory, anthropochory, zoochory and ombrohydrochory. The long cypselas of disperse farther away from parental sites and germinate readily under a wide range of conditions while short cypselas disperse to short distances and germinate under specific germination conditions at parental sites/in similar habitats. Therefore, the plant with secondary pollen presentation, facultative xenogamy, insects as pollinators, bimorphic cypselas and polychory is able to grow as a widespread weed.

Keyword: Bidens pilosa, Heterogamous head, Facultative xenogamy, Entomophily, Thripsophily, Bimorphic cypselas, polychory

Literature Cited

Allen, A.M., C.J. Thorogood, M.J. Hegarty, C. Lexer and S.J. Hiscock. 2011. Pollen-pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Ann. Bot. 108(4): 687-698.
DOI: 10.1093/aob/mcr147View Article Google Scholar

Amaral, A. and M. Takaki. 1998. Achene dimorphism in Bidens pilosa L. (Asteraceae) as determined by germination test. Brazilian Arch. Biol. and Technol. 41(1): 10-15.
DOI: 10.1590/S1516-89131998000100002View Article Google Scholar

Baker, H.G. and I. Baker. 1982. Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: M.H. Nitecki (ed.), Biochemical Aspects of Evolutionary Biology, pp. 131-171, The University of Chicago Press, Chicago.

Baker, H.G. and I. Baker. 1983. A brief historical review of the chemistry of floral nectar. In: B. Bentley and T. Elias (eds.), The Biology of Nectaries, pp. 126-152, Columbia University Press, New York.

Ballard, R. 1986. Bidens pilosa complex (Asteraceae) in North and Central America. Am. J. Bot. 73(10): 1452-1465.
DOI: 10.2307/2443850View Article Google Scholar

Barrett, S.C.H. 2002. Sexual interference of the floral kind. Heredity 88(2): 154-159.
DOI: 10.1038/sj.hdy.6800020View Article Google Scholar

Bhatti, J.S. 1980. Species of the genus Thrips from India (Thysanoptera). Syst. Entomol. 5(2): 109-166.
DOI: 10.1111/j.1365-3113.1980.tb00404.xView Article Google Scholar

Corkidi, L., E. Rincon and C. Vazquez-Yanes. 1991. Effect of light and temperature on germination of heteromorphic achenes of Bidens odorata (Asteraceae). Can. J. Bot. 69(3): 574-579.
DOI: 10.1139/b91-078View Article Google Scholar

Cruden, R.W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31(1): 32-46.
DOI: 10.2307/2407542View Article Google Scholar

Dafni, A., P.G. Kevanand B.C. Husband. 2005. Practical Pollination Biology. Enviroquest Ltd., Cambridge, 315 pp.

Forsyth, C. and N.A.C. Brown. 1982. Germination of the dimorphic fruits of Bidens pilosa L. The New Phytol. 90(1): 151-164.
DOI: 10.1111/j.1469-8137.1982.tb03248.xView Article Google Scholar

Gillett, G.W. 1975. The diversity and history of Polynesian Bidens section Campylotheca. Harold L. Lyon Arboretum Lecture Number 6. University of Hawaii, Honolulu, HI.

Grombone-Guaratini, M.T., V.N. Solferini and J. Semir. 2004. Reproductive biology in species of Bidens L. (Asteraceae). Sci. Agric. (Piracicaba, Brazil) 61(2): 185-189.
DOI: 10.1590/S0103-90162004000200010View Article Google Scholar

Gunathilagaraj, K., T.N.A. Perumal, K. Jayaram and M. Ganesh Kumar. 1998. Field Guide: Some South Indian Butterflies. Niligiri Wildlife and Environmental Association, Niligiri, 274 pp.

Harder, L.D., S.C.H. Barrett and W.W. Cole 2000. The mating consequences of sexual segregation within inflorescences of flowering plants. Proc. Royal Soc. B: Biol. Sci. 267(1441): 315-320.
DOI: 10.1098/rspb.2000.1002View Article Google Scholar

Harper, J.L. 1977. Population biology of Plants. Academic Press, London, 892 pp.

Heinrich, B. 1975. Energetics of pollination. Ann. Rev. Ecol. & Syst. 6(1): 139-170.
DOI: 10.1146/annurev.es.06.110175.001035View Article Google Scholar

Herrera, C.M. 2009. Multiplicity in unity: plant sub-individual variation and interaction with animals. The University of Chicago Press, London, 437 pp.

Howell, G.J., A.T. Slater and R.B. Knox. 1993. Secondary pollen presentation in angiosperms and its biological significance. Aust. J. Bot. 41(5): 417-438.
DOI: 10.1071/BT9930417View Article Google Scholar

Hsu, H.M. 2006. Implication of the invasiveness of Bidens pilosa var. radiata Sch. Bip. by studying its superiority over Bidens bipinnata L. MS thesis, National Taiwan University, Taipei, 98 pp.

Huang, Y.L. and W.Y. Kao. 2014. Different breeding systems of three varieties of Bidens pilosa in Taiwan. Weed Res. 54(2): 162-168.
DOI: 10.1111/wre.12060View Article Google Scholar

Huang, Y.L. and W.Y. Kao. 2015. Chromosome numbers of populations of three varieties of Bidens pilosa in Taiwan. Bot. Stud. 56(1):23.
DOI: 10.1186/s40529-015-0107-5View Article Google Scholar

Imbert, E. 2002. Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics 5(1): 13-36.
DOI: 10.1078/1433-8319-00021View Article Google Scholar

Imbert, F. and O. Ronce. 2001. Phenotype plasticity for dispersal ability in the seed heteromorphic Crepis sancta (Asteraceae). Oikos 93(1): 126-134.
DOI: 10.1034/j.1600-0706.2001.930114.xView Article Google Scholar

Jaimes, I. and N. Ramirez. 1999. Breeding systems in a secondary deciduous forest in Venezuela: the importance of life form, habitat, and pollination specificity. Plant Syst. and Evol. 215(1-4): 23-36.
DOI: 10.1007/BF00984645View Article Google Scholar

Jeffrey, C. 2009. Evolution of Compositae flowers. In: A. Funk., T.F. Susanna and R.J. Bayer (eds.), Systematics, evolution, and biogeography of Compositae, pp. 131-138, International Association for Plant Taxonomy, Vienna.

Knight, T.M., J.A. Steets, J.C. Vamosi, S.J. Mazer, M. Burd, D.R. Campbell, M.R. Dudash, M.O. Johnston, R.J. Mitchell and T.L. Ashman. 2005. Pollen limitation of plant reproduction: pattern and process. Annu. Rev. Ecol. Evol. Syst. 36(1): 467-497.
DOI: 10.1146/annurev.ecolsys.36.102403.115320View Article Google Scholar

Kunte, K. 2007. India – A Lifescape: Butterflies of Peninsular India. Universities Press, Hyderabad, 254 pp.

Ladd, P.G. 1994. Pollen presenters in the flowering plants - form and function. Bot. J. Linn. Soc. 115(3): 165-195.
DOI: 10.1006/bojl.1994.1040View Article Google Scholar

Leins, P. and C. Erbar. 2006. Secondary pollen presentation syndromes of the Asterales - a phylogenetic perspective. Bot. Jahrb. Syst. 127(1): 83-103.
DOI: 10.1127/0006-8152/2006/0127-0083View Article Google Scholar

Mani, M.S. and J.M. Saravanan. 1999. Pollination ecology and evolution in Compositae (Asteraceae). Science Publishers, New Hampshire, 166 pp.

McEvoy, P.B. 1984. Dormancy and dispersal in dimorphic achenes of tansy ragwort. Oecologia 61(2): 160-168.
DOI: 10.1007/BF00396754View Article Google Scholar

Nettancourt, D. 2001. Incompatibility and incongruity in Wild and Cultivated plants. Springer-Verlag, Berlin, 322 pp.
DOI: 10.1007/978-3-662-04502-2View Article

Pandey, H.N. and S.K. Dubey. 1988. Achene germination of Parthenium hysterophorus L.: effects of light, temperature, provenance and achene size. Weed Res. 28(3): 185-190.
DOI: 10.1111/j.1365-3180.1988.tb01605.xView Article Google Scholar

Peng, C.I., K.F. Chung and H.L. Li. 1998. Compositae. In: Editorial Committee of the Flora of Taiwan (ed.), Flora of Taiwan. pp. 868-870, 2nd Ed. Department of Botany, National Taiwan University.

Rai, J.P.N. and R.S. Tripathi. 1982. Adaptive significance of seed reserves in ray achenes of Galinsoga parviflora. Experientia 38(7): 804-806.
DOI: 10.1007/BF01972281View Article Google Scholar

Sheriff, E.E. 1937. The genus Bidens. Field Mus. Nat. Hist. Bot. Ser. 11: 412-461.
DOI: 10.5962/bhl.title.2287View Article

Sun, M. and F.R. Ganders. 1988. Mixed mating systems in Hawaiian Bidens (Asteraceae). Evolution 42(3): 516-527.
DOI: 10.2307/2409036View Article Google Scholar

Sun, M. and F.R. Ganders. 1990. Outcrossing rates and allozyme variation in rayed and rayless morphs of Bidens pilosa. Heredity 64(1): 139-143.
DOI: 10.1038/hdy.1990.18View Article Google Scholar

Torices, R., A. Agudo and I. Alvarez. 2013. Not only size matters: achene morphology affects time of seedling emergence in three heterocarpic species of Anacyclus (Anthemideae, Asteraceae). Anales del Jardin Botanico de Madrid 70(1): 48-55.
DOI: 10.3989/ajbm.2351View Article Google Scholar

Treier, U.A., O. Broennimann, S. Normand, A. Guisan, U. Schaffner, T. Steinger and H. Muller-Scharer. 2009. Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90(5): 1366-1377.
DOI: 10.1890/08-0420.1View Article Google Scholar

Valentin-Silva, A., M.A.A. Godinho, K.C. Cruz, S.M. Lelis and M.F. Vieira. 2016. Three psychophilous Asteraceae species with distinct reproductive mechanisms in southeastern Brazil. N. Z. J. Bot. 54(4): 498-510.
DOI: 10.1080/0028825X.2016.1236735View Article Google Scholar

Van Molken, T., I.D. Jorritsma-Wienk, P.H.W. van Hoek and H. deKroon. 2005. Only seed size matters for germination in different populations of the dimorphic Tragopogon pratensis subsp. pratensis (Asteraceae). Am. J. Bot. 92(3): 432-437.
DOI: 10.3732/ajb.92.3.432View Article Google Scholar

Wodehouse, R.P. 1935. Pollen grains: their structure, identification, and significance in Science and Medicine. 1st ed. McGraw-Hill, New York, 573 pp.

Wu, S.H., C.F. Hsieh, S.M. Chaw and M. Rejmanek. 2004. Plant invasions in Taiwan: insights from the flora of casual and naturalized alien species. Divers. Distrib. 10(5-6): 349-362.
DOI: 10.1111/j.1366-9516.2004.00121.xView Article Google Scholar

Wu, S.H., T.Y.A. Yang, Y.C. Teng, C.Y. Chang and C.F. Hsieh. 2010. Insights of the latest naturalized flora of Taiwan: change in the past 8 years. Taiwania 55(2): 139-159.
DOI: 10.6165/tai.2010.55(2).139View Article Google Scholar

Yeo, P.F. 1993. Secondary pollen presentation: Form, function and evolution. Plant Syst. Evol. Suppl. 6: 1-268.
DOI: 10.1007/978-3-7091-6670-3_2View Article Google Scholar