Research Paper
Study on the laminar hydathodes of Ficus formosana (Moraceae) V.: Divergent evolution between stomata and water pores
Chyi-Chuann Chen,Yung-Reui Chen
Published on: 30 April 2019
Page: 149 - 162
DOI: 10.6165/tai.2019.64.149
Abstract
Water pores and stomata play roles in water regulation through guttation and transpiration, respectively. On the Ficus formosana leaves, water pores are present in the hydathodes on the upper surface, whereas stomata are randomly distributed on the abaxial epidermis of non-vein regions. Here, we investigate the development and physiological functions of water pores and stomata from the same leaves and explore their evolutionary relationships. We compare their structures using optical and electron microscope, and establish their functions through physiological experiments. Ficus formosana Maxim. f. shimadae Hayata water pores are almost circular, whereas its stomata are elliptical. Water pores are clustered and occur at a higher density than stomata, with these latter being anomocytic. Our ultrastructural analysis shows that F. formosana f. shimadae water pores contain amyloplasts and have thickened walls around the pores, with many plasmodesmata observed during their development. The chloroplasts of the stomatal guard cells possess typical plant cell grana and thylakoids, and the inner walls around the stomatal space are thickened. The differentiation and developmental processes of water pores and stomata are similar. Stomatal apertures were regulated by light/dark, fusicoccin, ABA, or mannitol treatments, but water pores were not. Our findings indicate that water pores and stomata on the F. formosana f. shimadae leaves evolved divergently.
Keyword: Divergent evolution, Ficus formosana, laminar hydathodes, Moraceae, Stomata, Water pores
Literature Cited
Assmann, S.M. and J. Jegla. 2016. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Curr. Opin. Plant Biol. 33: 157-167.
DOI: 10.1016/j.pbi.2016.07.003View Article
Google Scholar
Aylor, D.E., J.Y. Parlange and A.D. Krikorian. 1973. Stomatal mechanics. Amer. J. Bot. 60(2): 163-171.
DOI: 10.2307/2441103View Article
Google Scholar
Berg, R.H. 2004. Evaluation of spectral imaging for plant cell analysis. J. Microsc. 214(2): 174-181.
DOI: 10.1111/j.0022-2720.2004.01347.xView Article
Google Scholar
Berger, D. and T. Altmann. 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Cell & Dev. 14: 1119-1131.
Brodribb, T.J. and S.A.M. McAdam. 2011. Passive origins of stomatal control in vascular plants. Science 331(6017): 582-585.
DOI: 10.1126/science.1197985View Article
Google Scholar
Casson, S. and J.E. Gray. 2008. Influence of environmental factors on stomatal development. New phytol. 178(1): 9-23.
DOI: 10.1111/j.1469-8137.2007.02351.xView Article
Google Scholar
Casson, S.A. and A.M. Hetherington. 2010. Environmental regulation of stomatal development. Curr. Opin. Plant Biol. 13(1): 90-95.
DOI: 10.1016/j.pbi.2009.08.005View Article
Google Scholar
Cerutti, A., A. Jauneau, M.C. Auriac, E. Lauber, Y. Martinez, S. Chiarenza, N. Leonhardt, R. Berthom? and L.D. Noel. 2017. Immunity at cauli?ower hydathodes controls systemic infection by Xanthomonas campestris pv campestris. Plant Physiol. 174(2): 700-716.
DOI: 10.1104/pp.16.01852View Article
Google Scholar
Chen, C.C. and Y.R. Chen. 2005. Study on laminar hydathodes of Ficus formosana (Moraceae) I. Morphology and ultrastructure. Bot. Bull. Acad. Sin. 46(3): 205-215.
DOI: 10.7016/BBAS.200507.0205View Article
Google Scholar
Chen, C.C. and Y.R. Chen. 2006. Study on laminar hydathodes of Ficus formosana (Moraceae) II. Morphogenesis of hydathodes. Bot. Stud. 47: 279-292.
Chen, C.C. and Y.R. Chen. 2007. Study on laminar hydathodes of Ficus formosana (Moraceae) III. Salt injury of guttation on hydathodes. Bot. Stud. 48: 215-226.
Chen, C.C. and Y.R. Chen. 2016. Study on the laminar hydathodes of Ficus formosana (Moraceae) IV. Coated vesicles endocytosis is one of the retrieval mechanisms of epithem during guttation. Taiwania 61(3): 194-200.
DOI: 10.6165/tai.2016.61.194View Article
Google Scholar
Coupe, S.A., B.G. Palmer, J.A. Lake, S.A. Overy, K. Oxborough, F I. Woodward, J.E. Gray and W.P. Quick. 2006. Systemic signalling of environmental cues in Arabidopsis leaves. J. Exp. Bot. 57(2): 329-341.
DOI: 10.1093/jxb/erj033View Article
Google Scholar
Croxdale, J.L. 2000. Stomatal patterning in angiosperms. Am. J. Bot. 87(8): 1069-1080.
DOI: 10.2307/2656643View Article
Google Scholar
Curtis, J.D. and N.R. Lersten. 1986. Hydathode anatomy in Potentilla palustris (Rosaceae). Nord. J. Bot. 6(6): 793-796.
DOI: 10.1111/j.1756-1051.1986.tb00482.xView Article
Google Scholar
Donnelly, D.J. and F.E. Skelton. 1987. Hydathode structure of micropropagated plantlets and greenhouse-grown ‘Totem’ strawberry plants. J. Amer. Soc. Hort Sci. 112:755-759.
Edwards, D., H. Kerp and H. Hass. 1998. Stomata in early land plants: an anatomical and ecophysiological approach. J. Exp. Bot. 49: 255-278.
DOI: 10.1093/jexbot/49.suppl_1.255View Article
Google Scholar
Erwee, M.G., P.B. Goodwin and A.J.E. Van Bel. 1985. Cell-cell communication in the leaves of Commelina cyanea and other plants. Plant Cell Environ 8(3): 173-178.
DOI: 10.1111/j.1365-3040.1985.tb01383.xView Article
Google Scholar
Esau, K. 1977. Anatomy of Seed Plants. John Wiley and Sons, Inc., New York.
DOI: 10.1097/00010694-196008000-00031View Article
Google Scholar
Geisler, M., J. Nadeau and F.D. Sack. 2000. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted. Plant Cell 12(11): 2075-2086.
DOI: 10.1105/tpc.12.11.2075View Article
Google Scholar
Gray, J.E. 2007 Plant development: three steps for stomata. Curr. Biol. 17(6): R213-R215.
DOI: 10.1016/j.cub.2007.01.032View Article
Google Scholar
Gray, J.E. and A.M. Hetherington. 2004. Plant Development: YODA the Stomatal Switch. Curr. Biol. 14(12): R488-R490.
DOI: 10.1016/j.cub.2004.06.019View Article
Google Scholar
Grunwald, I., I. Rupprecht, G. Schuster and K. Kloppstech. 2003. Identi?cation of guttation ?uid proteins: The presence of pathogenesis-related proteins in non-infected barley plants. Physiol. Plant 119(2): 192-202
DOI: 10.1034/j.1399-3054.2003.00202.xView Article
Google Scholar
Guseman, J.M., J.S. Lee, N.L. Bogenschutz, K.M. Peterson, R.E. Virata, B. Xie, M.M. Kanaoka, Z. Hong and K.U. Torii. 2010. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8). Development 137(10): 1731-1741.
DOI: 10.1242/dev.049197View Article
Google Scholar
Hossain, M.B., N. Matsuyama and M. Kawasaki. 2016. Hydathode morphology and role of guttation in excreting sodium at different concentrations of sodium chloride in eddo. Plant Prod. Sci. 19(4): 528-539
DOI: 10.1080/1343943X.2016.1210990View Article
Google Scholar
Hugouvieux, V., C.E. Barber and M.J. Daniels. 1998. Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: A system for studying early infection events in bacterial pathogenesis. Mol. Plant Microbe Interact. 11(6): 537-543.
DOI: 10.1094/MPMI.1998.11.6.537View Article
Google Scholar
Kazama, H., H. Dan, H. Imaseki and G.O. Wasteneys. 2004. Transient exposure to ethylene stimulates cell division and alters the fate and polarity of hypocotyl epidermal cells. Plant Physiol. 134(4):1614-1623.
DOI: 10.1104/pp.103.031088View Article
Google Scholar
Kieber, J.J., M. Rothenberg, G. Roman, K. Feldmann and J.R. Ecker. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of Raf family of protein kinases. Cell 72(3): 427-441.
DOI: 10.1016/0092-8674(93)90119-BView Article
Google Scholar
Kollist, H., M. Nuhkat and M.R.G. Roelfsema. 2014. Closing gaps: linking elements that control stomatal movement. New phytol. 203(1): 44-62.
DOI: 10.1111/nph.12832View Article
Google Scholar
Kong, D., R. Karve, A. Willet, M.K. Chen, J. Oden and E.D. Shpak. 2012. Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-Like protein KOBITO1. Plant Physiol. 159(1): 156-168.
DOI: 10.1104/pp.112.194563View Article
Google Scholar
Lake, J.A. and F.I. Woodward. 2008. Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytol. 179(2):397-404.
DOI: 10.1111/j.1469-8137.2008.02485.xView Article
Google Scholar
Lersten, N.R. and J.D. Curtis. 1985. Distribution and Anatomy of Hydathodes in Asteraceae. Bot. Gaz. 146(1):106-114.
DOI: 10.1086/337504View Article
Google Scholar
Lersten, N.R. and J.D. Curtis. 1991. Laminar hydathodes in Urticaceae: survey of tribes and anatomical observations on Pilea pumila and Urtica dioica. Plant Syst. Evol. 176(3-4): 179-203.
DOI: 10.1007/BF00937906View Article
Google Scholar
Maeda, E. and K. Maeda. 1987. Ultrastructural studies of leaf hydathodes. I. Wheat (Triticum aestivum) leaf tips. Jpn. J. Crop Sci. 56(4): 641-651.
DOI: 10.1626/jcs.56.641View Article
Google Scholar
Maeda, E. and K. Maeda. 1988. Ultrastructural studies of leaf hydathodes II. Rice (Oryza sativa) leaf tips. Jpn. J. Crop Sci. 57(4): 733-742.
DOI: 10.1626/jcs.57.733View Article
Google Scholar
Martin, C.E. and D.J. von Willert. 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol. 2(2): 229-242, 2000.
DOI: 10.1055/s-2000-9163View Article
Google Scholar
McAinsh M.R., H. Clayton, T.A. Mansfield and A.M. Hetherington. 1996. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol. 111(4): 1031-1042.
DOI: 10.1104/pp.111.4.1031View Article
Google Scholar
Melotto, M., W. Underwood, and S.Y. He. 2008. Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annu. Rev. Phytopathol. 46(1):101-122.
DOI: 10.1146/annurev.phyto.121107.104959View Article
Google Scholar
Melotto, M., W. Underwood, J. Koczan, K. Nomura and S.Y. He. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126(5): 969-980.
DOI: 10.1016/j.cell.2006.06.054View Article
Google Scholar
Mortlock, C. 1951. The structure and development of the hydathodes of Ranunculus fluitans Lam. New Phytol. 51(2): 129-138.
DOI: 10.1111/j.1469-8137.1952.tb06121.xView Article
Google Scholar
Murata, Y., I.C. Mori and S. Munemasa. 2015. Diverse stomatal signaling and the signal integration mechanism. Annu. Rev. Plant Biol. 66(1): 369-392.
DOI: 10.1146/annurev-arplant-043014-114707View Article
Google Scholar
Oparka, K.J. and A.G. Roberts. 2001 Plasmodesmata. A not so open-and-shut case. Plant Physiology 125(1): 123-126.
DOI: 10.1104/pp.125.1.123View Article
Google Scholar
Panchal, S., R. Chitrakar, B.K. Thompson, N. Obulareddy, D. Roy, W.S. Hambright and M. Melotto. 2016. Regulation of stomatal defense by air relative humidity. Plant Physiol. 172(3): 2021-2032.
DOI: 10.1104/pp.16.00696View Article
Google Scholar
Perdersen, O., L.B. Jorgensen and K. Sand-Jensen. 1997. Through-flow of water in leaves of a submerged plant is influenced by the apical opening. Planta 202(1): 43-50.
DOI: 10.1007/s004250050101View Article
Google Scholar
Pillitteri, L.J., N.L. Bogenschutz and K.W. Torii. 2008. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant Cell Physiol. 49(6): 934-943.
DOI: 10.1093/pcp/pcn067View Article
Google Scholar
Pillitteri, L.J. and K.U. Torii. 2012. Mechanisms of stomatal development. Ann. Rev. Plant Physiol. 63(1): 591-614.
DOI: 10.1146/annurev-arplant-042811-105451View Article
Google Scholar
Pillitteri, L.J. and J. Dong. 2013. Stomatal development in Arabidopsis. Arabidopsis Book 11: e0162
DOI: 10.1199/tab.0162View Article
Google Scholar
Raven, J.A. 2002. Selection pressures on stomatal evolution. New Phytol. 153(3): 371-386.
DOI: 10.1046/j.0028-646X.2001.00334.xView Article
Google Scholar
Roelfsema, M.R. and R. Hedrich. 2005. In the light of stomatal opening: New insights into ‘the Watergate’. New Phytol. 167(3): 665-691.
DOI: 10.1111/j.1469-8137.2005.01460.xView Article
Google Scholar
Salisbury, F.B. and C. Ross. 1992. Plant Physiology. Wadsworth Publish. Co., Belmont, CA.
Schoch, P.G., Zinsou C. and M. Sibi. 1980. Dependence of stomatal index on environmental factors during stomata differentiation in leaves of Vigna signensis L. J. Exp. Bot. 31(5): 1211-1216
DOI: 10.1093/jxb/31.5.1211View Article
Google Scholar
Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Rev. 26(1-2): 31-43.
DOI: 10.1016/S0022-5320(69)90033-1View Article
Google Scholar
Taiz, L. and E. Zeiger. 1991. Plant Physiology. The Benjamin/Cummings Publish. Co., San Francisco, CA.
Thomas, P.W., F.I. Woodward and P.W. Quick. 2003. Systemic irradiance signalling in tobacco. New Phytol. 161(1): 193-198.
DOI: 10.1046/j.1469-8137.2003.00954.xView Article
Google Scholar
Waman, M.B. 2015. Foliar epidermal traits in some species of genus Ficus. Internat. J. Recent Trend in Sci. and Tech. 15(3): 518-520.
Wang, H., N. Ngwenyama, Y. Liu, J.C. Walker and S. Zhang. 2007. Stomatal development and patterning regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19(1): 63-73.
DOI: 10.1105/tpc.106.048298View Article
Google Scholar
Wightman, R., S. Wallis and P. Aston. 2017. Hydathode pit development in the alpine plant Saxifraga cochlearis. Flora 233: 99-108.
DOI: 10.1016/j.flora.2017.05.018View Article
Google Scholar
Willmer, C.M. and R. Sexton. 1979. Stomata and plasmodesmata. Protoplasma 100(1):113-124
DOI: 10.1007/BF01276305View Article
Google Scholar
Woodward, F.I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327(6123): 617-618.
DOI: 10.1038/327617a0View Article
Google Scholar
Yang, M. and F.D. Sack. 1995. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7(12): 2227-2239.
DOI: 10.1105/tpc.7.12.2227View Article
Google Scholar
Zeng, W., M. Melotto and S.Y. He. 2010. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21(5):599-603.
DOI: 10.1016/j.copbio.2010.05.006View Article
Google Scholar
Zheng, Y., M. Xu, R. Hou, R. Shen, S. Qiu and Z. Ouyang. 2013. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Eco. Evol. 3(9): 3095-3111.
DOI: 10.1002/ece3.674View Article
Google Scholar