Research Paper

Study on the laminar hydathodes of Ficus formosana (Moraceae) V.: Divergent evolution between stomata and water pores

Chyi-Chuann Chen,Yung-Reui Chen

Published on: 30 April 2019

Page: 149 - 162

DOI: 10.6165/tai.2019.64.149

Abstract

Water pores and stomata play roles in water regulation through guttation and transpiration, respectively. On the Ficus formosana leaves, water pores are present in the hydathodes on the upper surface, whereas stomata are randomly distributed on the abaxial epidermis of non-vein regions. Here, we investigate the development and physiological functions of water pores and stomata from the same leaves and explore their evolutionary relationships. We compare their structures using optical and electron microscope, and establish their functions through physiological experiments. Ficus formosana Maxim. f. shimadae Hayata water pores are almost circular, whereas its stomata are elliptical. Water pores are clustered and occur at a higher density than stomata, with these latter being anomocytic. Our ultrastructural analysis shows that F. formosana f. shimadae water pores contain amyloplasts and have thickened walls around the pores, with many plasmodesmata observed during their development. The chloroplasts of the stomatal guard cells possess typical plant cell grana and thylakoids, and the inner walls around the stomatal space are thickened. The differentiation and developmental processes of water pores and stomata are similar. Stomatal apertures were regulated by light/dark, fusicoccin, ABA, or mannitol treatments, but water pores were not. Our findings indicate that water pores and stomata on the F. formosana f. shimadae leaves evolved divergently.

Keyword: Divergent evolution, Ficus formosana, laminar hydathodes, Moraceae, Stomata, Water pores

Literature Cited

Assmann, S.M. and J. Jegla. 2016. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Curr. Opin. Plant Biol. 33: 157-167.
DOI: 10.1016/j.pbi.2016.07.003View Article Google Scholar

Aylor, D.E., J.Y. Parlange and A.D. Krikorian. 1973. Stomatal mechanics. Amer. J. Bot. 60(2): 163-171.
DOI: 10.2307/2441103View Article Google Scholar

Berg, R.H. 2004. Evaluation of spectral imaging for plant cell analysis. J. Microsc. 214(2): 174-181.
DOI: 10.1111/j.0022-2720.2004.01347.xView Article Google Scholar

Berger, D. and T. Altmann. 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Cell & Dev. 14: 1119-1131.

Brodribb, T.J. and S.A.M. McAdam. 2011. Passive origins of stomatal control in vascular plants. Science 331(6017): 582-585.
DOI: 10.1126/science.1197985View Article Google Scholar

Casson, S. and J.E. Gray. 2008. Influence of environmental factors on stomatal development. New phytol. 178(1): 9-23.
DOI: 10.1111/j.1469-8137.2007.02351.xView Article Google Scholar

Casson, S.A. and A.M. Hetherington. 2010. Environmental regulation of stomatal development. Curr. Opin. Plant Biol. 13(1): 90-95.
DOI: 10.1016/j.pbi.2009.08.005View Article Google Scholar

Cerutti, A., A. Jauneau, M.C. Auriac, E. Lauber, Y. Martinez, S. Chiarenza, N. Leonhardt, R. Berthom? and L.D. Noel. 2017. Immunity at cauli?ower hydathodes controls systemic infection by Xanthomonas campestris pv campestris. Plant Physiol. 174(2): 700-716.
DOI: 10.1104/pp.16.01852View Article Google Scholar

Chen, C.C. and Y.R. Chen. 2005. Study on laminar hydathodes of Ficus formosana (Moraceae) I. Morphology and ultrastructure. Bot. Bull. Acad. Sin. 46(3): 205-215.
DOI: 10.7016/BBAS.200507.0205View Article Google Scholar

Chen, C.C. and Y.R. Chen. 2006. Study on laminar hydathodes of Ficus formosana (Moraceae) II. Morphogenesis of hydathodes. Bot. Stud. 47: 279-292.

Chen, C.C. and Y.R. Chen. 2007. Study on laminar hydathodes of Ficus formosana (Moraceae) III. Salt injury of guttation on hydathodes. Bot. Stud. 48: 215-226.

Chen, C.C. and Y.R. Chen. 2016. Study on the laminar hydathodes of Ficus formosana (Moraceae) IV. Coated vesicles endocytosis is one of the retrieval mechanisms of epithem during guttation. Taiwania 61(3): 194-200.
DOI: 10.6165/tai.2016.61.194View Article Google Scholar

Coupe, S.A., B.G. Palmer, J.A. Lake, S.A. Overy, K. Oxborough, F I. Woodward, J.E. Gray and W.P. Quick. 2006. Systemic signalling of environmental cues in Arabidopsis leaves. J. Exp. Bot. 57(2): 329-341.
DOI: 10.1093/jxb/erj033View Article Google Scholar

Croxdale, J.L. 2000. Stomatal patterning in angiosperms. Am. J. Bot. 87(8): 1069-1080.
DOI: 10.2307/2656643View Article Google Scholar

Curtis, J.D. and N.R. Lersten. 1986. Hydathode anatomy in Potentilla palustris (Rosaceae). Nord. J. Bot. 6(6): 793-796.
DOI: 10.1111/j.1756-1051.1986.tb00482.xView Article Google Scholar

Donnelly, D.J. and F.E. Skelton. 1987. Hydathode structure of micropropagated plantlets and greenhouse-grown ‘Totem’ strawberry plants. J. Amer. Soc. Hort Sci. 112:755-759.

Edwards, D., H. Kerp and H. Hass. 1998. Stomata in early land plants: an anatomical and ecophysiological approach. J. Exp. Bot. 49: 255-278.
DOI: 10.1093/jexbot/49.suppl_1.255View Article Google Scholar

Erwee, M.G., P.B. Goodwin and A.J.E. Van Bel. 1985. Cell-cell communication in the leaves of Commelina cyanea and other plants. Plant Cell Environ 8(3): 173-178.
DOI: 10.1111/j.1365-3040.1985.tb01383.xView Article Google Scholar

Esau, K. 1977. Anatomy of Seed Plants. John Wiley and Sons, Inc., New York.
DOI: 10.1097/00010694-196008000-00031View Article Google Scholar

Geisler, M., J. Nadeau and F.D. Sack. 2000. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted. Plant Cell 12(11): 2075-2086.
DOI: 10.1105/tpc.12.11.2075View Article Google Scholar

Gray, J.E. 2007 Plant development: three steps for stomata. Curr. Biol. 17(6): R213-R215.
DOI: 10.1016/j.cub.2007.01.032View Article Google Scholar

Gray, J.E. and A.M. Hetherington. 2004. Plant Development: YODA the Stomatal Switch. Curr. Biol. 14(12): R488-R490.
DOI: 10.1016/j.cub.2004.06.019View Article Google Scholar

Grunwald, I., I. Rupprecht, G. Schuster and K. Kloppstech. 2003. Identi?cation of guttation ?uid proteins: The presence of pathogenesis-related proteins in non-infected barley plants. Physiol. Plant 119(2): 192-202
DOI: 10.1034/j.1399-3054.2003.00202.xView Article Google Scholar

Guseman, J.M., J.S. Lee, N.L. Bogenschutz, K.M. Peterson, R.E. Virata, B. Xie, M.M. Kanaoka, Z. Hong and K.U. Torii. 2010. Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8). Development 137(10): 1731-1741.
DOI: 10.1242/dev.049197View Article Google Scholar

Hossain, M.B., N. Matsuyama and M. Kawasaki. 2016. Hydathode morphology and role of guttation in excreting sodium at different concentrations of sodium chloride in eddo. Plant Prod. Sci. 19(4): 528-539
DOI: 10.1080/1343943X.2016.1210990View Article Google Scholar

Hugouvieux, V., C.E. Barber and M.J. Daniels. 1998. Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: A system for studying early infection events in bacterial pathogenesis. Mol. Plant Microbe Interact. 11(6): 537-543.
DOI: 10.1094/MPMI.1998.11.6.537View Article Google Scholar

Kazama, H., H. Dan, H. Imaseki and G.O. Wasteneys. 2004. Transient exposure to ethylene stimulates cell division and alters the fate and polarity of hypocotyl epidermal cells. Plant Physiol. 134(4):1614-1623.
DOI: 10.1104/pp.103.031088View Article Google Scholar

Kieber, J.J., M. Rothenberg, G. Roman, K. Feldmann and J.R. Ecker. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of Raf family of protein kinases. Cell 72(3): 427-441.
DOI: 10.1016/0092-8674(93)90119-BView Article Google Scholar

Kollist, H., M. Nuhkat and M.R.G. Roelfsema. 2014. Closing gaps: linking elements that control stomatal movement. New phytol. 203(1): 44-62.
DOI: 10.1111/nph.12832View Article Google Scholar

Kong, D., R. Karve, A. Willet, M.K. Chen, J. Oden and E.D. Shpak. 2012. Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-Like protein KOBITO1. Plant Physiol. 159(1): 156-168.
DOI: 10.1104/pp.112.194563View Article Google Scholar

Lake, J.A. and F.I. Woodward. 2008. Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytol. 179(2):397-404.
DOI: 10.1111/j.1469-8137.2008.02485.xView Article Google Scholar

Lersten, N.R. and J.D. Curtis. 1985. Distribution and Anatomy of Hydathodes in Asteraceae. Bot. Gaz. 146(1):106-114.
DOI: 10.1086/337504View Article Google Scholar

Lersten, N.R. and J.D. Curtis. 1991. Laminar hydathodes in Urticaceae: survey of tribes and anatomical observations on Pilea pumila and Urtica dioica. Plant Syst. Evol. 176(3-4): 179-203.
DOI: 10.1007/BF00937906View Article Google Scholar

Maeda, E. and K. Maeda. 1987. Ultrastructural studies of leaf hydathodes. I. Wheat (Triticum aestivum) leaf tips. Jpn. J. Crop Sci. 56(4): 641-651.
DOI: 10.1626/jcs.56.641View Article Google Scholar

Maeda, E. and K. Maeda. 1988. Ultrastructural studies of leaf hydathodes II. Rice (Oryza sativa) leaf tips. Jpn. J. Crop Sci. 57(4): 733-742.
DOI: 10.1626/jcs.57.733View Article Google Scholar

Martin, C.E. and D.J. von Willert. 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol. 2(2): 229-242, 2000.
DOI: 10.1055/s-2000-9163View Article Google Scholar

McAinsh M.R., H. Clayton, T.A. Mansfield and A.M. Hetherington. 1996. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol. 111(4): 1031-1042.
DOI: 10.1104/pp.111.4.1031View Article Google Scholar

Melotto, M., W. Underwood, and S.Y. He. 2008. Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annu. Rev. Phytopathol. 46(1):101-122.
DOI: 10.1146/annurev.phyto.121107.104959View Article Google Scholar

Melotto, M., W. Underwood, J. Koczan, K. Nomura and S.Y. He. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126(5): 969-980.
DOI: 10.1016/j.cell.2006.06.054View Article Google Scholar

Mortlock, C. 1951. The structure and development of the hydathodes of Ranunculus fluitans Lam. New Phytol. 51(2): 129-138.
DOI: 10.1111/j.1469-8137.1952.tb06121.xView Article Google Scholar

Murata, Y., I.C. Mori and S. Munemasa. 2015. Diverse stomatal signaling and the signal integration mechanism. Annu. Rev. Plant Biol. 66(1): 369-392.
DOI: 10.1146/annurev-arplant-043014-114707View Article Google Scholar

Oparka, K.J. and A.G. Roberts. 2001 Plasmodesmata. A not so open-and-shut case. Plant Physiology 125(1): 123-126.
DOI: 10.1104/pp.125.1.123View Article Google Scholar

Panchal, S., R. Chitrakar, B.K. Thompson, N. Obulareddy, D. Roy, W.S. Hambright and M. Melotto. 2016. Regulation of stomatal defense by air relative humidity. Plant Physiol. 172(3): 2021-2032.
DOI: 10.1104/pp.16.00696View Article Google Scholar

Perdersen, O., L.B. Jorgensen and K. Sand-Jensen. 1997. Through-flow of water in leaves of a submerged plant is influenced by the apical opening. Planta 202(1): 43-50.
DOI: 10.1007/s004250050101View Article Google Scholar

Pillitteri, L.J., N.L. Bogenschutz and K.W. Torii. 2008. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant Cell Physiol. 49(6): 934-943.
DOI: 10.1093/pcp/pcn067View Article Google Scholar

Pillitteri, L.J. and K.U. Torii. 2012. Mechanisms of stomatal development. Ann. Rev. Plant Physiol. 63(1): 591-614.
DOI: 10.1146/annurev-arplant-042811-105451View Article Google Scholar

Pillitteri, L.J. and J. Dong. 2013. Stomatal development in Arabidopsis. Arabidopsis Book 11: e0162
DOI: 10.1199/tab.0162View Article Google Scholar

Raven, J.A. 2002. Selection pressures on stomatal evolution. New Phytol. 153(3): 371-386.
DOI: 10.1046/j.0028-646X.2001.00334.xView Article Google Scholar

Roelfsema, M.R. and R. Hedrich. 2005. In the light of stomatal opening: New insights into ‘the Watergate’. New Phytol. 167(3): 665-691.
DOI: 10.1111/j.1469-8137.2005.01460.xView Article Google Scholar

Salisbury, F.B. and C. Ross. 1992. Plant Physiology. Wadsworth Publish. Co., Belmont, CA.

Schoch, P.G., Zinsou C. and M. Sibi. 1980. Dependence of stomatal index on environmental factors during stomata differentiation in leaves of Vigna signensis L. J. Exp. Bot. 31(5): 1211-1216
DOI: 10.1093/jxb/31.5.1211View Article Google Scholar

Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Rev. 26(1-2): 31-43.
DOI: 10.1016/S0022-5320(69)90033-1View Article Google Scholar

Taiz, L. and E. Zeiger. 1991. Plant Physiology. The Benjamin/Cummings Publish. Co., San Francisco, CA.

Thomas, P.W., F.I. Woodward and P.W. Quick. 2003. Systemic irradiance signalling in tobacco. New Phytol. 161(1): 193-198.
DOI: 10.1046/j.1469-8137.2003.00954.xView Article Google Scholar

Waman, M.B. 2015. Foliar epidermal traits in some species of genus Ficus. Internat. J. Recent Trend in Sci. and Tech. 15(3): 518-520.

Wang, H., N. Ngwenyama, Y. Liu, J.C. Walker and S. Zhang. 2007. Stomatal development and patterning regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19(1): 63-73.
DOI: 10.1105/tpc.106.048298View Article Google Scholar

Wightman, R., S. Wallis and P. Aston. 2017. Hydathode pit development in the alpine plant Saxifraga cochlearis. Flora 233: 99-108.
DOI: 10.1016/j.flora.2017.05.018View Article Google Scholar

Willmer, C.M. and R. Sexton. 1979. Stomata and plasmodesmata. Protoplasma 100(1):113-124
DOI: 10.1007/BF01276305View Article Google Scholar

Woodward, F.I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327(6123): 617-618.
DOI: 10.1038/327617a0View Article Google Scholar

Yang, M. and F.D. Sack. 1995. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7(12): 2227-2239.
DOI: 10.1105/tpc.7.12.2227View Article Google Scholar

Zeng, W., M. Melotto and S.Y. He. 2010. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21(5):599-603.
DOI: 10.1016/j.copbio.2010.05.006View Article Google Scholar

Zheng, Y., M. Xu, R. Hou, R. Shen, S. Qiu and Z. Ouyang. 2013. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Eco. Evol. 3(9): 3095-3111.
DOI: 10.1002/ece3.674View Article Google Scholar