Research Paper

Regulation of tree crown phenology and fruit set of Cinnamomum kanehirae Hayata, an endangered evergreen tree in Taiwan

Ching-Chu Tsai, Li-Fen Hung, Jeng-Der Chung, Wen-Yuan Kao, Ling-Long Kuo-Huang

Published on: 04 January 2020

Page: 15 - 26

DOI: 10.6165/tai.2020.65.15


Phenological pattern of forest trees reveals climatic controls on phenophases and fruit development, hence providing key information for managing endangered species. We aimed to investigate tree crown phenology and fruit development of even-aged, dominant and codominant trees and to integrate the results with our study of wood radial growth of Cinnamomum kanehirae (Tsai et al., 2018). We conducted a 3-year ground-based observation of leaf, flower and fruit phenology. The fruit set and development were compared among 3 comparison groups: leafless inflorescence, leafy inflorescence and defoliated leafy inflorescence. The reproductive growth of C. kanehirae was present only in dominant trees. Dominant trees saw leaf flushes twice a year, while codominant trees once or twice. The overlapped spans of reproductive and vegetative growth implied resource competitions between these two phenophases and might cause fruitlet self-thinning in March and premature abortion in Autumn. Fruit development was correlated to the number of nearby ordinary leaves instead of inflorescence leaves. Reduced sunshine hours in autumn, 2011 may lead to the delayed flowering and truncated wood growing season of dominant trees in 2012. The different reproductive ability between tree social classes and the response of floral phenology to sunshine hours suggest important roles of light availability in fruit nursery.

Keyword: Cinnamomum kanehirae, fruit development, leafy inflorescence, resource allocation, tree social class

Literature Cited

Ali, N.S. and C. Trivedi. 2011. Botanic gardens and climate change: A review of scientific activities at the Royal Botanic Gardens, Kew. Biodivers. Conserv. 20(2): 295–307.
DOI: 10.1007/s10531-010-9944-4View Article Google Scholar

Bepete, M. and A.N. Lakso. 1998. Differential effects of shade on early-season fruit and shoot growth rates in ‘Empire’ apple. HortScience 33(5): 823–825.
DOI: 10.21273/HORTSCI.33.5.823View Article Google Scholar

Berntson, G.M. and P.M. Wayne. 2000. Characterizing the size dependence of resource acquisition within crowded plant populations. Ecology 81(4): 1072–1085.
DOI: 10.1890/0012-9658(2000)081[1072:CTSDOR]2.0.CO;2View Article Google Scholar

Callado, C.H., S.J.D.S. Neto, F.R. Scarano and C.G. Costa. 2001. Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees - Struct. Funct. 15(8): 492–497.

Chung, J.-D., C.-T. Chien and C.-P. Tsai. 2012. Seed tree forests and seed orchards of Cinnamomum kanehirae Hay. (in Chinese). For. Res. Newsl. 19: 21–25.

?ufar, K., P. Prislan, M.De Luis and J. Gri?ar. 2008. Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees - Struct. Funct. 22(6): 749–758.
DOI: 10.1007/s00468-008-0235-6View Article Google Scholar

Delpierre, N., Y. Vitasse, I. Chuine, J. Guillemot, S. Bazot, T. Rutishauser and C.B.K.K. Rathgeber. 2015. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73(1): 5–25.
DOI: 10.1007/s13595-015-0477-6View Article Google Scholar

Dickson, R.E. and J.G. Isebrands. 1991. Leaves as regulators of stress response. In: Mooney et al. (eds.), Response of Plants to Multiple Stresses, 422. Academic Press, San Diego.
DOI: 10.1016/B978-0-08-092483-0.50006-2View Article Google Scholar

Erel, R., U. Yermiyahu, H. Yasuor, D.C. Chamus, A. Schwartz, A. Ben-Gal and A. Dag. 2016. Phosphorous nutritional level, carbohydrate reserves and flower quality in olives. PLoS One 11(12): 1–19.
DOI: 10.1371/journal.pone.0167591View Article Google Scholar

Erner, Y. and B. Bravdo. 1983. The importance of inflorescence leaves in fruit setting of ‘Shamouti’ orange. Acta Hortic. 139: 107–112.
DOI: 10.17660/ActaHortic.1983.139.14View Article Google Scholar

Erner, Y. and I. Shomer. 1996. Morphology and anatomy of stems and pedicels of spring flush shoots associated with Citrus fruit set. Ann. Bot. 78(5): 537–545.
DOI: 10.1006/anbo.1996.0158View Article Google Scholar

Ferree, D.C., S.J. McArtney and D.M. Scurlock. 2001. Influence of irradiance and period of exposure on fruit set of French-American hybrid grapes. J. Am. Soc. Hortic. Sci. 126(3): 283–290.
DOI: 10.21273/JASHS.126.3.283View Article Google Scholar

Hasegawa, S., K. Koba, I. Tayasu, H. Takeda and H. Haga. 2003. Carbon autonomy of reproductive shoots of Siberian alder (Alnus hirsuta var. sibirica). J. Plant Res. 116(3): 183–188.
DOI: 10.1007/s10265-003-0085-7View Article Google Scholar

Hoch, G. 2005. Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant, Cell Environ. 28(5): 651–659.
DOI: 10.1111/j.1365-3040.2004.01311.xView Article Google Scholar

Huang, S.-G., K.-Y. Ho, K. Wu, Y.-C. Sen and W.-Y. Lieu. 1996. Survey on the composition and structure of natural Cinnamomum kanehirae forests. Taiwan J. For. Sci. 11(4): 349–360.
DOI: 10.7075/TJFS.199612.0349View Article Google Scholar

Imai, S. and K. Ogawa. 2009. Quantitative analysis of carbon balance in the reproductive organs and leaves of Cinnamomum camphora (L.) Presl. J. Plant Res. 122(4): 429–437.
DOI: 10.1007/s10265-009-0233-9View Article Google Scholar

Kagawa, A., A. Sugimoto and T.C. Maximov. 2006. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29(8): 1571–1584.
DOI: 10.1111/j.1365-3040.2006.01533.xView Article Google Scholar

Kalbfleisch, J.D. and R.L. Prentice. 2002. The statistical analysis of failure time data. John Wiley and Sons, Inc., Hoboken, NJ, USA.
DOI: 10.1002/9781118032985View Article

Kao, Y.-P. and S.-G. Huang. 1997a. Cutting propagation of Cinnamomum kanehirae. In: Koh (ed.), Symposium on Biology and Silviculture Techniques of Cinnamomum kanehirae (in Chinese), 85–104. Taiwan Forestry Research Institute, Taipei.

Kao, Y.-P. and S.-G. Huang. 1997b. Reforestation trial of Cinnamomum kanehirae rooted cutting in southern Taiwan. In: Koh (ed.), Symposium on Biology and Silviculture Techniques of Cinnamomum kanehirae (in Chinese), 119–124. Taiwan Forestry Research Institute, Taipei.

Kuster, T.M., M. Dobbertin, M.S. G?nthardt-Goerg, M.Schaub and M. Arend. 2014. A phenological timetable of oak growth under experimental drought and air warming. PLoS One 9(2): e89724.
DOI: 10.1371/journal.pone.0089724View Article Google Scholar

Lee, S.-M. and I. B.-J. Jiang. 2011. Conservation of forest genetic resources: case studies (in Chinese). Taiwan For. J. 37: 16–22.

Lin, H.-C. 1997. Establishment of seed orchard for Cinnamomum kanehirae Hay. (in Chinese). Taiwan For. J. 23: 8–12.

Lin, T.-P., Y.-P. Cheng and S.-G. Huang. 1997. Allozyme variation in four geographic areas of Cinnamomum kanehirae. J. Hered. 88(5): 433–438.
DOI: 10.1093/oxfordjournals.jhered.a023131View Article Google Scholar

Lisi, C.S., F.M. Tomazello, P.C. Botosso, F.a. Roig, V.R.B. Maria, L. Ferreira-Fedele and a.R. a Voigt. 2008. Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J. 29(2): 189–207.
DOI: 10.1163/22941932-90000179View Article Google Scholar

L?f, M. and N.T. Welander. 2000. Carry-over effects on growth and transpiration in Fagus sylvatica seedlings after drought at various stages of development. Can. J. For. Res. 30(3): 468–475.
DOI: 10.1139/x99-232View Article Google Scholar

Meinzer, F.C., R. Ceulemans, T.M. Hinckley, J. Cerm?k, D. G. Sprugel, J. Kucera, J.S. Rombold, T.A. Martin and K.J. Brown. 1997. Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest. Can. J. For. Res. 27(6): 797–808.
DOI: 10.1139/cjfr-27-6-797View Article Google Scholar

Michelot, A., S. Simard, C. Rathgeber, E. Dufr?ne and C. Damesin. 2012. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol. 32(8): 1033–1043.
DOI: 10.1093/treephys/tps052View Article Google Scholar

Morellato, L.P.C., B. Alberton, S.T. Alvarado, B. Borges, E. Buisson, M.G.G. Camargo, L.F. Cancian, D.W. Carstensen, D.F.E. Escobar, P.T.P. Leite, I. Mendoza, N.M.W.B. Rocha, N.C. Soares, T.S.F. Silva, V.G. Staggemeier, A.S. Streher, B.C. Vargas and C.A. Peres. 2016. Linking plant phenology to conservation biology. Biol. Conserv. 195: 60–72.
DOI: 10.1016/j.biocon.2015.12.033View Article Google Scholar

Moss, G. I., B.T. Steer and P.E. Kriedemann. 1972. The regulatory role of inflorescence leaves in fruit-setting by sweet orange (Citrus sinensis). Physiol. Plant. 27(3): 432–438.
DOI: 10.1111/j.1399-3054.1972.tb03639.xView Article Google Scholar

Nitta, I. and M. Ohsawa. 1997. Leaf dynamics and shoot phenology of eleven warm-temperate evergreen broad-leaved trees near their northern limit in central Japan. Plant Ecol. 130(1): 71–88.
DOI: 10.1023/A:1009735709258View Article

Patel, V. R., S. Pramod and K.S. Rao. 2014. Cambial activity, annual rhythm of xylem production in relation to phenology and climatic factors and lignification pattern during xylogenesis in drum-stick tree (Moringa oleifera). Flora 209(10): 556–566.
DOI: 10.1016/j.flora.2014.08.002View Article Google Scholar

P?rez-de-Lis, G., J.M. Olano, V. Rozas, S. Rossi, R.A. V?zquez-Ruiz and I. Garc?a-Gonz?lez. 2017. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Funct. Ecol. 31(3): 592–603.
DOI: 10.1111/1365-2435.12789View Article Google Scholar

Pucha?ka, R., M. Koprowski, J. Gri?ar and R. Przybylak. 2017. Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)? Eur. J. For. Res. 136(2): 259–268.
DOI: 10.1007/s10342-017-1026-7View Article Google Scholar

R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rao, K.S. and K.S. Rajput. 2001. Relationship between seasonal cambial activity, development of xylem and phenology in Azadirachta indica growing in different forests of Gujarat State. Ann. For. Sci. 58(6): 691–698.
DOI: 10.1051/forest:2001156View Article Google Scholar

Rathcke, B. and E.P. Lacey. 1985. Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Syst. 16(1): 179–214.
DOI: 10.1146/ Article Google Scholar

Rossi, S., T. Anfodillo, K. ?ufar, H.E. Cuny, A. Deslauriers, P. Fonti, D. Frank, J. Gri?ar, A. Gruber, J.G. Huang, T. Jyske, J. Ka?par, G. King, C. Krause, E. Liang, H. M?kinen, H. Morin, P. N?jd, W. Oberhuber, P. Prislan, C.B. Rathgeber, A. Saracino, I. Swidrak, V. Treml. 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Chang. Biol. 22(11): 3804–3813.
DOI: 10.1111/gcb.13317View Article Google Scholar

Rossi, S., C.B.K. Rathgeber and A. Deslauriers. 2009. Comparing needle and shoot phenology with xylem development on three conifer species in Italy. Ann. For. Sci. 66(2): 1–8.
DOI: 10.1051/forest/2008088View Article Google Scholar

Saidha, T., E.E. Goldschmidt and S.P. Monselise. 1985. Endogenous cytokinins from developing ‘Shamouti’ orange fruits derived from leafy and leafless inflorescences. Sci. Horticulaturae 26(1): 35–41.
DOI: 10.1016/0304-4238(85)90099-8View Article Google Scholar

Sellin, A., E. ?unapuu and A. Karusion. 2010. Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance. Tree Physiol. 30(12): 1528–1535.
DOI: 10.1093/treephys/tpq091View Article Google Scholar

Sprugel, D.G., T.M. Hinckley and W. Schaap. 1991. The theory and practice of branch autonomy. Annu. Rev. Ecol. Syst. 22(1): 309–334.
DOI: 10.1146/annurev.ecolsys.22.1.309View Article Google Scholar

Therneau, T.M. and P.M. Grambsch. 2000. Modeling survival data: extending the Cox model. Springer, New York.

Tsai, C.-C., L.-F. Hung, J.-D. Chung, S.-J. Chen, C.-T. Chien, W.-Y. Kao and L.-L. Kuo-Huang. 2018. Radial growth of Cinnamomum kanehirae Hayata displays a larger temperature sensitivity in dominant than codominant trees. Ann. For. Sci. 75(2): 52.
DOI: 10.1007/s13595-018-0735-5View Article Google Scholar

Urban, J., E. Bedn??ov?, R. Plichta, V. Gryc, H. Vavr??k, J. Hacura, M. Fajstavr and J. Ku?era. 2015. Links between phenology and ecophysiology in a European beech forest. IForest 8(4): 438–447.
DOI: 10.3832/ifor1307-007View Article Google Scholar

Welander, N.T. and B. Ottosson. 1998. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. For. Ecol. Manage. 107(1-3): 117–126.
DOI: 10.1016/S0378-1127(97)00326-5View Article Google Scholar

Worbes, M. 2002. One hundred years of tree-ring research in the tropics - A brief history and an outlook to future challenges. Dendrochronologia 20(1-2): 217–231.
DOI: 10.1078/1125-7865-00018View Article Google Scholar

Y??ez-Espinosa, L., T. Terrazas and L. L?pez-Mata. 2006. Integrated analysis of tropical trees growth: a multivariate approach. Ann. Bot. 98(3): 637–645.
DOI: 10.1093/aob/mcl142View Article Google Scholar

Yu, H.-M., N.-H. Chang, F.-C. Ma, Y.-S. Lin, K.-C. Chen, S.-D. Lin and L.-Y. Wu. 2012. The growth performance of Cinnamomum kanehirai (in Chinese). For. Res. Newsl. 19: 39–42.

Yu, H.-M. and F.-W. Horng. 1997. Out-planted performance of Cinnamomum kanehirae shoot cuttings. In: Koh (ed.), Proceedings of the Symposium on Biology and Silviculture Techniques of Cinnamomum kanehirae (in Chinese), 113–117. Taiwan Forestry Research Institute, Taipei.