Research Paper
Stomatal blue light response is present in Marsilea crenata, an amphibious fern
Tai-Chung Wu, Bai-Ling Lin, Wen-Yuan Kao
Published on: 16 September 2020
Page: 456 - 462
DOI: 10.6165/tai.2020.65.456
Abstract
The active and passive regulation of stomatal response to environmental stimulation has been well studied in angiosperms but rarely in ferns. Active stomatal control of Marsilea crenata, an amphibious fern, in response to CO2 concentration and exogenous application of abscisic acid was reported in a previous study. The objectives of the current study were to investigate whether M. crenata has stomatal blue light (BL) response and to evaluate the sensitivity of the response. Leaf stomatal conductance (gs) of the fern grown under two light regimes and the apertures of stomata on isolated epidermal strips irradiated with photosynthetically saturated red light (RL) or with RL plus BL were measured. Stomatal response of two angiosperms and two other ferns (Adiantum capillus-veneris and Nephrolepis auriculata) were also measured. Application of 50 μmol m-2 s-1 BL caused a significant increase in gs of M. crenata and Sambucus chinensis (an angiosperm) leaves irradiated with photosynthetically saturated RL of 900 μmol m-2 s-1, indicating the presence of stomatal BL-specific response. The response was not detected in the two other ferns. In comparison to sole RL irradiated epidermal strips, a 43 % increment of the ratio of stomatal width/length was measured in M. crenata epidermal strips irradiated with RL plus BL. M. crenata grown under shading lost the stomatal BL-specific response. In conclusion, this is the first report of the presence of stomatal BL-specific response in a fern of Polypodiopsida. However, growth conditions have strong effects on the sensitivity of the specific response of the fern.
Keyword: Fern, Marsilea crenata, Polypodiopsida, stomatal blue light-specific response
Literature Cited
Ando, E. and T. Kinoshita. 2018. Red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Physiol. 178(2): 838–849.
DOI: 10.1104/pp.18.00544View Article
Google Scholar
Briggs W.R. and J.M. Christie. 2002. Phototropins1and 2: Versatile plant blue-light receptors. Trends Plant Sci. 7(5): 204–210.
DOI: 10.1016/S1360-1385(02)02245-8View Article
Google Scholar
Buckley, T. 2005. The control of stomata by water balance. New Phytol. 168(2): 275–292.
DOI: 10.1111/j.1469-8137.2005.01543.xView Article
Google Scholar
Chazdon, R.L. 1988. Sunflecks and their importance to forest understorey plants. Adv. Ecol. Res. 18: 1–63
DOI: 10.1016/S0065-2504(08)60179-8View Article
Google Scholar
Chazdon, R.L. and R.W. Pearcy 1991. The importance of sunflecks for forest understory plants. Bioscience 41(11): 760–766.
DOI: 10.2307/1311725View Article
Google Scholar
Cox, C.J. 2018. Land plant molecular phylogenetics: a review with comments on evaluating incongruence among phylogenies. Curr. Rev. Plant Sci. 37(2-3): 113–127.
DOI: 10.1080/07352689.2018.1482443View Article
Google Scholar
Darwin, F. 1898. Observations on stomata. Proc. R. Soc. Lond. 63(389-400): 413–417.
DOI: 10.1098/rspl.1898.0053View Article
Google Scholar
Dayanandan, P. and P.B. Kaufman. 1975. Stomatal movements associated with potassium fluxes. Am. J. Bot. 62(3): 221-231.
DOI: 10.2307/2441855View Article
Google Scholar
Doi, M., Y. Kitagawa and K.-i. Shimazaki. 2015. Stomatal blue light response is present in early vascular plants. Plant Physiol. 169(2): 1205–1213.
DOI: 10.1104/pp.15.00134View Article
Google Scholar
Doi, M., M. Wada and K. Shimazaki. 2006. The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant Cell Physiol. 47(6): 748.
DOI: 10.1093/pcp/pcj048View Article
Google Scholar
Edwards, D., K. Davies and L. Axe. 1992. A vascular conducting strand in the early land plant Cooksonia. Nature 357(6380): 683–685.
DOI: 10.1038/357683a0View Article
Google Scholar
Franks, P.J. and Z.J. Britton-Harper. 2016. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? New Phytol. 211(3): 819–827.
DOI: 10.1111/nph.14020View Article
Google Scholar
Frechilla, S., L.D. Talbott and E. Zeiger. 2004. The blue light-specific response of Vicia faba stomata acclimates to growth environment. Plant Cell Physiol. 45(11): 1709–1714.
DOI: 10.1093/pcp/pch197View Article
Google Scholar
Gifford, E.M. and A.S. Foster. 1988. Morphology and Evolution of Vascular Plants. 3rd edn. Freeman, New York.
Huang, Y.-C. 2015. Leaf stomatal response to blue light and CO2 concentration in six fern species. Master Thesis. NTU, Taipei, Taiwan.
H?rak, H., H. Kollist and E. Merilo. 2017. Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiol. 174(2): 672–679.
DOI: 10.1104/pp.17.00120View Article
Google Scholar
Horrer, D., S. Fl?tsch, D. Pazmino, J.S.A Matthews, M. Thalmann, A. Nigro, N. Leonhardt, T. Lawson and D. Santelia. 2016. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr. Bio. 26(3): 362–370.
DOI: 10.1016/j.cub.2015.12.036View Article
Google Scholar
Harris, B.J., C. J. Harrison, A.M.Hetherington and T.A. Williams. 2020. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr. Bio. 30(11): 2001–2012.
DOI: 10.1016/j.cub.2020.03.048View Article
Google Scholar
Iino, M., T. Ogawa and T. Zeiger. 1985, Kinetic-properties of the blue-light response of stomata. PNAS 82(23): 8019–8023.
DOI: 10.1073/pnas.82.23.8019View Article
Google Scholar
Kao, W-Y., and B.-L. Lin. 2010. Phototropic leaf movements and photosynthetic performance in an amphibious fern, Marsilea quadrifolia. J. Plant Res. 123(5): 645–653.
DOI: 10.1007/s10265-009-0300-2View Article
Google Scholar
Kinoshita T, and K. Shimazaki. 1999. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18(20): 5548–5558.
DOI: 10.1093/emboj/18.20.5548View Article
Google Scholar
Lawson, T., S. Lefebvre, N.R. Baker, J.I. L. Morison and C.A. Raines. 2008 Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J. Exp. Bot. 59(13): 3609–3619.
DOI: 10.1093/jxb/ern211View Article
Google Scholar
Lee, S. H., R. K. Tewari, E. J. Hahn and K. Y. Paek. 2007. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. Plant Cell Tiss. Org. 90(2): 141–151.
DOI: 10.1007/s11240-006-9191-2View Article
Google Scholar
Lima, V.F., L. dos Anjos, D.B.Medeiros, S.A. C?ndido-Sobrinho, L.P. Souza, J. Gago, A.R. Fernie and D.M. Daloso. 2019. The sucrose-to-malate ratio correlates with the faster CO2 and light stomatal responses of angiosperms compared to ferns. New Phytol. 223(4): 1873–1887.
DOI: 10.1111/nph.15927View Article
Google Scholar
McAinsh, M.R., C. Brownlee and A.M. Hetherington. 1991. Partial inhibition of ABA-induced stomatal closure by calcium-channel blockers. Proc. R. Soc. Lond. Ser. B: Bio. Sci. 243(1308): 195–201.
DOI: 10.1098/rspb.1991.0031View Article
Google Scholar
Messinger, S.M., T.N. Buckley and K. A. Mott. 2006. Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol. 140(2): 771–778
DOI: 10.1104/pp.105.073676View Article
Google Scholar
Mott, K.A., D.G. Berg, S.M.Hunt and D. Peak. 2014. Is the signal from the mesophyll to the guard cells a vapour-phase ion? Plant, Cell Env. 37(5): 1184–1191.
DOI: 10.1111/pce.12226View Article
Google Scholar
Schneider, E. and S. Carlquist. 2000. SEM studies on vessels in ferns. 19. Marsilea. Am. Fern J. 90(1): 32–41.
DOI: 10.2307/1547260View Article
Google Scholar
Schneider, H., E. Schuettpelz, K. M. Pryer, R. Cranfill, S. Magall?n and R. Lupia. 2004. Ferns diversified in the shadow of angiosperms. Nature 428(6982): 553.
DOI: 10.1038/nature02361View Article
Google Scholar
Shen, L., P. Sun, V.C. Bonnell, K.J. Edwards, A.M. Hetherington, M.R. McAinsh and M.R. Roberts. 2015. Measuring stress signaling responses of stomata in isolated epidermis of graminaceous species. Front. Plant Sci. 6: 533–539.
DOI: 10.3389/fpls.2015.00533View Article
Google Scholar
Shimazaki, K., M. Doi, S. M. Assmann and T. Kinoshita. 2007. Light regulation of stomatal movement. Ann. Rev. Plant Bio. 58(1): 219–247.
DOI: 10.1146/annurev.arplant.57.032905.105434View Article
Google Scholar
Talbott, L. D. and E. Zeiger. 1998. The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49: 329–337.
DOI: 10.1093/jxb/49.Special_Issue.329View Article
Google Scholar
Wang, Y., K. Noguchi and I. Terashima. 2011. Photosynthesis-dependent and -independent responses of stomata to blue, red and green monochromatic light: Differences between the normally oriented and inverted leaves of sunflower. Plant Cell Physiol. 52(3):479–489.
DOI: 10.1093/pcp/pcr005View Article
Google Scholar
Wu, T.-C. 2020. Studies on Ecophysiological Traits of Three Marsilea species. Doctoral thesis. National Taiwan Universtiy. Taipei, Taiwan.
Wu, T-C., B.L. Lin and W.Y. Kao. 2020. Active stomatal control of Marsilea crenata in response to CO2 concentration and exogenous application of ABA. Taiwania 65(4): 431–437.
Zeiger, E. 1984. Blue light and stomatal function. Pages 484–494. Blue light effects in biological systems. Springer, Berlin, Heidelberg.
DOI: 10.1007/978-3-642-69767-8_54View Article
Google Scholar