Research Paper
Rhizobacteria alleviate the adverse effects of salt stress on seedling growth of Capsicum annuum L. by modulating the antioxidant enzyme activity and mineral uptake
Melek Ekinci, Ayhan Kocaman, Sanem Argin, Metin Turan, Fatih Dadasoglu, Ertan Yildirim
Published on: 05 July 2021
Page: 287 - 297
DOI: 10.6165/tai.2021.66.287
Abstract
Salinity is one of the most important factors restricting vegetative production, especially in arid and semi-arid regions. In this study,the effects of the exogenous plant growth-promoting rhizobacteria (PGPR: Bacillus pumilus UG-41, Bacillus cereus UG-50) application on seedling growth, concentration of plant nutrient elements, antioxidant activity and chlorophyll, proline, sugar, hydrogen peroxide (H2O2), malondialdehyde (MDA), hormone contents of pepper seedlings under salinity stress conditions (100 mM NaCl) were investigated. Our results showed that gibberellic acid (GA), salicylic acid (SA), indole acetic acid (IAA), leaf relative water content (LRWC) and the concentration of all plant tissue nutrients investigated except for Na were decreased by salt stress. On the other hand, PGPR treatment increased the plant growth parameters by increasing the proline, sucrose, hormone and chlorophyll contents; altering the mineral uptake and increasing the antioxidant enzyme activity in pepper seedlings under salt stress. In conclusion, PGPR treatment may be used as an effective technique to protect the plants against salinity stress since the bacteria positively impact the ability of the plant to cope with the stress by particularly increasing the antioxidant enzyme activity, hormone level and mineral uptake.
Keyword: Antioxidant enzyme activity, bacteria, gibberellic acid, mineral uptake, salicylic acid, salinity stress
Literature Cited
Acosta-Motos, J.R., M.F. Ortu?o, A. Bernal-Vicente, P. Diaz-Vivancos, M.J. S?nchez-Blanco, and J.A. Hern?ndez. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1): 18.
DOI: 10.3390/agronomy7010018View Article
Google Scholar
Aktas, H., K. Abak, I. Cakmak. 2006. Genotypic variation in the response of pepper to salinity. Sci. Hortic. 110(3): 260?266.
DOI: 10.1016/j.scienta.2006.07.017View Article
Google Scholar
Alscher, R.G. and J.R. Cumming. 1990. Stress Responses in Plants: Sdaptation and Acclimation Mechanisms. Wiley-Liss.
Alt?n, N. and T. Bora. 2005. Bitki geli?imini uyaran k?k bakterilerinin genel ?zellikleri ve etkileri. Anadolu Ege Tar?msal Ara?t?rma Enstit?s? Dergisi 15(2): 87?103.
Arrowsmith, S., T.P. Egan, J.F. Meekins, D. Powers, M. Metcalfe. 2012. Effects of salt stress on capsaicin content, growth, and fluorescence in a Jalape?o cultivar of Capsicum annuum (Solanaceae). Bios 83(1): 1?7.
DOI: 10.1893/0005-3155-83.1.1View Article
Google Scholar
Ashraf, M. and P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166(1): 3?16.
DOI: 10.1016/j.plantsci.2003.10.024View Article
Google Scholar
Azuma, R., I. Naoko, N. Nakayama, R. Suwa, N.T. Nguen, J.A. Larrinaga-Mayoral, M. Esaka, H. Fujiyama, H. Saneoka. 2010. Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci. Hortic. 125(3): 171?178.
DOI: 10.1016/j.scienta.2010.04.006View Article
Google Scholar
Bashan, Y. and G. Holguin. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30(8-9): 1225?1228.
DOI: 10.1016/S0038-0717(97)00187-9View Article
Google Scholar
Bates, L.S., R.P. Waldron, I.W. Teaxe. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39(1): 205?207.
DOI: 10.1007/BF00018060View Article
Google Scholar
Battal, P. and B. Tileklioglu. 2001. The effects of different mineral nutrients on the levels of cytokinins in maize (Zea mays L.). Turk. J. Bot. 25: 123?130.
Bolarin, M.C., F. Perez-Alfocea, E.A. Cano, M.T. Estan, M. Caro. 1993. Growth, fruit yield and ion concentration in tomato genotypes after pre-and post emergence salt treatments. J. Am. Soc. Hortic. Sci. 118(5): 655?660.
DOI: 10.21273/JASHS.118.5.655View Article
Google Scholar
Caba?ero, F.J., V. Mart??nez, M. Carvajal. 2004. Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake? Plant Sci. 166(2): 443?450.
DOI: 10.1016/j.plantsci.2003.10.010View Article
Google Scholar
Cassaniti, C., D. Romano, M.E.C.M. Hop, T.J. Flowers. 2013. Growing floricultural crops with brackish water. Environ. Exp. Bot. 92: 165?175.
DOI: 10.1016/j.envexpbot.2012.08.006View Article
Google Scholar
Chartzoulakis, K. and G. Klapaki. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 86(3): 247?260.
DOI: 10.1016/S0304-4238(00)00151-5View Article
Google Scholar
Chopra, J., N. Kaur, A.K. Gupta. 2000. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry 53(5): 539?548.
DOI: 10.1016/S0031-9422(99)00545-2View Article
Google Scholar
Connor, J.D., K. Schwabe, D. King and K. Knapp. 2012. Irrigated agriculture and climate change: the influence of water supply variability and salinity on adaptation. Ecol. Econ. 77: 149?157.
DOI: 10.1016/j.ecolecon.2012.02.021View Article
Google Scholar
Cramer, G.R. 2002. Sodium-calcium interactions under salinity stress. In A. L?uchli and U. L?ttge: Salinity: Environment-plants-molecules. 205?227 pp. Springer, Dordrecht.
DOI: 10.1007/0-306-48155-3_10View Article
Google Scholar
De Pascale, S., C. Ruggiero, G. Barbieri, A. Maggio. 2003. Physiological responses of pepper to salinity and drought. J. Am. Soc. Hortic. Sci. 128(1): 48?54.
DOI: 10.21273/JASHS.128.1.0048View Article
Google Scholar
Dobbelaere, S., J. Vanderleyden, Y. Yaacov Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizospher. Crit. Rev. Plant Sci. 22(2):107?149.
DOI: 10.1080/713610853View Article
Google Scholar
Egamberdieva, D. 2013. The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: M. Miransari (eds.) Biotechnological Techniques of Stress Tolerance in Plants. Studium, Houston, TX, 21?39.
Egamberdieva, D. and G. H?flich. 2003. Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35(7): 973?978.
DOI: 10.1016/S0038-0717(03)00158-5View Article
Google Scholar
Ekinci, M., E. Y?ld?r?m, A. Dursun, N.S. Mohamedsrajaden. 2019. Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling. Yuzuncu Yil Univ. J. Agric. Sci. 29(2): 290?299.
Esring?, A., D, Kaynar, M. Turan, S. Ercisli. 2016. Ameliorative Effect of Humic Acid and Plant Growth-Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress. Commun. in Soil Sci. Plant Anal. 47(5): 602–618
DOI: 10.1080/00103624.2016.1141922View Article
Google Scholar
Flowers, T.J., M.A. Hajibagheri, A.R. Yeo. 1991. Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for Oertli hypothesis. PPlant Cell Environ. 14(3): 319?325.
DOI: 10.1111/j.1365-3040.1991.tb01507.xView Article
Google Scholar
Foolad, M.R., G.Y. Lin, F.Q. Chen. 1999. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118(2): 167?173.
DOI: 10.1046/j.1439-0523.1999.118002167.xView Article
Google Scholar
Ghanem, M.E., A. Albacete, C. Mart?nez-And?jar, M. Acosta, R. Romero-Aranda, I.C. Dodd, S. Lutts, F. P?rez-Alfocea. 2008. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J. Exp. Bot. 59(11): 3039?3050.
DOI: 10.1093/jxb/ern153View Article
Google Scholar
Glick, B.R., D.M. Penrose, J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190(1): 63?68.
DOI: 10.1006/jtbi.1997.0532View Article
Google Scholar
Grichko, V.P., B.R. Glick. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39(1): 11?17.
DOI: 10.1016/S0981-9428(00)01212-2View Article
Google Scholar
Gunes, A., A. Inal, M. Alpaslan. 1996. Effect of salinity on stomatal resistance, proline and mineral composition of pepper. J. Plant Nutr. 19(2): 359?396.
DOI: 10.1080/01904169609365129View Article
Google Scholar
Gunes, A., K. Karagoz, M. Turan, R. Kotan, E. Yildirim, R. Cakmakci, F. Sahin. 2015. Fertilizer efficiency of some plant growth promoting rhizobacteria for plant growth. Research J. Soil Biol. 7(2): 28?45.
DOI: 10.3923/rjsb.2015.28.45View Article
Google Scholar
Gutierrez Ma?ero, F.J., B. Ramos, A. Probanza, J. Mehouachi, F.R. Tadeo, M. Tal?n. 2001. The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111(2): 206?211.
DOI: 10.1034/j.1399-3054.2001.1110211.xView Article
Google Scholar
Hahm, M.S., J.S. Son, Y.J. Hwang, D.K. Kwon, S.Y. Ghim, 2017. Alleviation of salt stress in pepper (Capsicum annum l.) plants by plant growth-promoting rhizobacteria. J. Microbiol. Biotechnol. 27(10): 1790?1797
DOI: 10.4014/jmb.1609.09042View Article
Google Scholar
Han, H.S. and K.D. Lee. 2005. Plant growth promoting rhizobacteria. Effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res. J. Agric. & Biol. Sci. 1: 210?215.
Hand, M.J., V.D. Taffouo, A.E. Nouck, K.P.J. Nyemene, L.B. Tonfack, T.L. Meguekam, E. Youmbi. 2017. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45(2): 481?490.
DOI: 10.15835/nbha45210928View Article
Google Scholar
Hasegawa, P.M., R.A. Bressan, J.K. Zhu, H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physio. & Plant Mol. Biol. 51(1): 463?499.
Houimli, S.I.M., M. Denden, B.D. Mouhandes. 2010. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian J. Biosci. 4: 96?104.
DOI: 10.5053/ejobios.2010.4.0.12View Article
Google Scholar
Houimli, S.I.M., M. Denden, S.B. El Hadj. 2008. Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. EurAsian J. Biosci. 2: 83?90.
Hussein, M.M., S.Y. El-Faham, A.K. Alva. 2012. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water. Agric. Sci. 3(2): 241?248.
DOI: 10.4236/as.2012.32028View Article
Google Scholar
Jaleel, C., B. Sankar, R. Sridharan, R. Panneerselvam. 2008. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol. 32: 79?83.
Jamal, Q., L. Seong, J. Deok, K. Young. 2018. Effect of plant growth-promoting bacteria Bacillus amylliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Prot. Sci. 54(3): 129?137.
DOI: 10.17221/154/2016-PPSView Article
Google Scholar
Jia, W., Y. Wang, S. Zhang, J. Zhang. 2002. Salt?stress?induced ABA accumulation is more sensitively triggered in roots than in shoots. J. Exp. Bot. 53(378): 2201?2206.
DOI: 10.1093/jxb/erf079View Article
Google Scholar
Kaouther, Z., B.F. Mariem, M. Fardaous, H., Cherif. 2012. Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.). J. Stress Physiol. Biochem. 8(4): 236?252.
Karlidag, H., A. Esitken, E. Yildirim, M.F. Donmez, M. Turan. 2011. Effects of plant growth promoting bacteria (PGPB) on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions. J. Plant Nutr. 34(1): 34?45.
DOI: 10.1080/01904167.2011.531357View Article
Google Scholar
K?ran, S., S. Kusvuran, C. Ates, K. S?nmez, S. Ellialtioglu. 2018. Morphological characteristics and ion concentrations of grafted and non-grafted eggplant seedlings under drought and salt stress. J. Anim. Plant Sci. 28(6): 1755?1765.
Kishor, P.K., S. Sangam, R.N. Amrutha, P.S. Laxmi, K.R. Naidu, K.S. Rao, K.J. Reddy, P. Theriappan, N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. 88(3): 424?438.
Kohler, J., F. Caravaca, A. Rold?n. 2010. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 42(3): 429?434.
DOI: 10.1016/j.soilbio.2009.11.021View Article
Google Scholar
Kohler, J., J.A. Hern?ndez, F. Caravaca, A. Rold?n. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 65(2-3): 245?252.
DOI: 10.1016/j.envexpbot.2008.09.008View Article
Google Scholar
Kuraishi, S., K. Tasaki, N. Sakurai, K. Sadatoku. 1991. Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant Cell Physiol. 32(5): 585?591.
DOI: 10.1093/oxfordjournals.pcp.a078120View Article
Google Scholar
Kusvuran, S., S. Ellialtioglu, K. Abak, F. Yasar. 2007. Responses of some melon (Cucumis sp.) genotypes to salt stress. J. Agric. Sci. 13(2): 395?404.
DOI: 10.15740/HAS/IJAS/13.2/242-248View Article
Google Scholar
Lichtenthaler, H. and A.R. Wellburm. 1983. Determination of toplam carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11(5): 591–593.
DOI: 10.1042/bst0110591View Article
Google Scholar
Lim, C.S., S.M. Kang, J.L. Cho, K.C. Gross. 2009. Antioxidizing enzyme activities in chilling-sensitive and chilling-tolerant pepper fruit as affected by stage of ripeness and storage temperature. J. Am. Soc. Hortic. Sci. 134(1): 156?163.
DOI: 10.21273/JASHS.134.1.156View Article
Google Scholar
Lucy, M., E. Reed, B.R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86(1): 1?25.
DOI: 10.1023/B:ANTO.0000024903.10757.6eView Article
Google Scholar
Maas, E.V. 1986. Salt tolerance of plants. J. Appl. Agric. Res. 1(1): 12?25.
Machado, R.M.A. and R.P. Serralheiro. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2): 30.
DOI: 10.3390/horticulturae3020030View Article
Google Scholar
Mansour, M. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43(4): 491?500.
DOI: 10.1023/A:1002873531707View Article
Google Scholar
Marschner, H. 2012. Mineral Nutrition of Higher Plants. Academic Press, London.
Mayak, S., T. Tirosh, B.R. Glick. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Sci. 166(2): 525?530.
DOI: 10.1016/j.plantsci.2003.10.025View Article
Google Scholar
Mehta, S. and C.S. Nautiyal. 2001. An efficient method for qualitative screening of phosphatesolubilizing bacteria. Curr. Microbiol. 43(1): 51?56.
DOI: 10.1007/s002840010259View Article
Google Scholar
Mertens, D. 2005a. Plants preparation of laboratory sample. In: W. Horwitz and G.W. Latimer, (eds.). Official Methods of Analysis, 18th. Gaithersburg, MD, USA, AOAC, 1?2.
Mertens, D. 2005b. Metal in plants and pet foods. In: W. Horwitz and G.W. Latimer, (eds.). Official Methods of Analysis, 18th. Gaithersburg, MD, USA, AOAC, 3?4.
Mukhopadhyay, R., B. Sarkar, H. S. Jat, P. C. Sharma and N. S. Bolan. 2020. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manage. 280: 111736.
DOI: 10.1016/j.jenvman.2020.111736View Article
Google Scholar
Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59(1): 651?681.
DOI: 10.1146/annurev.arplant.59.032607.092911View Article
Google Scholar
Navarro, J., C. Garrido, M. Carvajal, V. Martinez. 2002. Yield and fruit quality of pepper plants under sulphate and chloride salinity. J. Hortic. Sci. Biotechnol. 77(1): 52–57
DOI: 10.1080/14620316.2002.11511456View Article
Google Scholar
Ozdemir, B., Z.O. Tanyola?, K. Ulukap?, A.N. Onus. 2016. Evaluation of salinity tolerance level of some pepper (Capsicum annuum L.) cultivars. Inter J Agric Innov Res, 5:1473?2319.
Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effect on plants: a review. Ecotoxicol. Environ. Saf. 60(3): 324?349.
DOI: 10.1016/j.ecoenv.2004.06.010View Article
Google Scholar
Parwaiz, A. and S. Satyawati. 2008. Salt stress and phytobiochemical responses of plants - a review. Plant Soil Environ. 54(3): 89?99.
DOI: 10.17221/2774-PSEView Article
Google Scholar
Penella, C., M. Landi, L. Guidi, S.G. Nebauer, E. Pellegrini, A. San Bautista, D. Remorini, C. Nali, S. L?pez-Galarza, A. Calatayud. 2016. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J Plant Physio. 193: 1?11.
DOI: 10.1016/j.jplph.2016.02.007View Article
Google Scholar
P?rez-L?pez, U., A. Robredo, M. Lacuesta, A. Mena-Petite, A. Mu?oz-Rueda. 2009. The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environ. Exp. Bot. 66(3): 463?470.
DOI: 10.1016/j.envexpbot.2009.03.007View Article
Google Scholar
Pieterse, C., J. Van Pelt, B. Verhagen, J. Ton, A.C.M. Wees, K.M. L?on-Kloosterziel, L.C. Loon. 2003. Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35: 39?54.
Pi?ero, M.C., F. Houdusse, J. M. Garcia-Mina, M. Garnica, F.M. del Amor. 2014. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration. Physio. Plant. 151(4): 375?389.
DOI: 10.1111/ppl.12119View Article
Google Scholar
Sahin, U., M. Ekinci, S. Ors, M. Turan, S. Yildiz, E. Yildirim. 2018. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic. 240: 196?204.
DOI: 10.1016/j.scienta.2018.06.016View Article
Google Scholar
Sairam, R.K., K.V. Rao, G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163(5): 1037?1046.
DOI: 10.1016/S0168-9452(02)00278-9View Article
Google Scholar
Samanc?o?lu, A. and E. Y?ld?r?m. 2015. Bitki geli?imini te?vik eden bakteri uygulamalar?n?n bitkilerde kurakl??a tolerans? artt?rmadaki etkileri. Mustafa Kemal ?niversitesi, Ziraat Fak?ltesi Dergisi 20(1): 72?79.
Samanc?o?lu, A., E. Yildirim, M. Turan, R. Kotan, U. Sahin. 2016. Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of cabbage seedlings by Plant Growth Promoting Rhizobacteria. Int. J. Agric. Biol. 18(5): 948?956.
DOI: 10.17957/IJAB/15.0195View Article
Google Scholar
S?nchez, F., J. Manzanares Ma, E.F. de Andres, J. L. Tenorio, L. Ayerbe. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res. 59(3): 225?235
DOI: 10.1016/S0378-4290(98)00125-7View Article
Google Scholar
Santner, A. and M. Estelle. 2009. Recent advances and emerging trends in plant hormone signalling. Nature 459(7250): 1071.
DOI: 10.1038/nature08122View Article
Google Scholar
Schwabe, K.A., I. Kan and K.C. Knapp. 2006. Drainwater management for salinity mitigation in irrigated agriculture. Am. J. Agric. Econ. 88(1): 133?149.
DOI: 10.1111/j.1467-8276.2006.00843.xView Article
Google Scholar
Shams, M. and E. Yildirim. 2020. Variations in response of CaPAO and CaATG8c genes, hormone, photosynthesis and antioxidative system in pepper genotypes under salinity stress, Sci. Hortic. 282: 110041.
Shams, M., M. Ekinci, S. Ors, M. Turan, G. Agar, R. Kul, E. Y?ld?r?m. 2019. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol. Mol. Biol. Plants 25(5): 1149?1161.
DOI: 10.1007/s12298-019-00692-2View Article
Google Scholar
Shannon, M.C. and C.M. Grieve. 1999. Tolerance of vegetables tosalinity. Sci. Hortic. 78(1-4): 5?38.
DOI: 10.1016/S0304-4238(98)00189-7View Article
Google Scholar
Shantharam, S. and A.K. Mattoo. 1997. Enhancing biological nitrogen fixation: An appraisal of current and alternative technologies for N input into plants. In: J.K. Ladha, F.J. de Bruijn, K.A. Malik (eds) Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Developments in Plant and Soil Sciences, vol 75. 205?216 pp. Springer, Dordrecht.
DOI: 10.1007/978-94-011-7113-7_20View Article
Google Scholar
Shrivastava, P. and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22(2): 123?131.
DOI: 10.1016/j.sjbs.2014.12.001View Article
Google Scholar
Siddikee, A., B. Glick, P. Chauhan, W. Jong Yim, T. Sa, 2011. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1- aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol. Biochem. 49(4): 427?434.
DOI: 10.1016/j.plaphy.2011.01.015View Article
Google Scholar
Suarez, D.L. 2010. Soil salinization and management options for sustainable crop production. In: M. Pessaralki (eds.). Handbook of Plant and Crop Stress. pp. 41–54. Boca Raton, FL: CRC Press
DOI: 10.1201/b10329-5View Article
Google Scholar
Sudhakar, C., P.S. Reddy, K. Veeranjaneyulu. 1993. Effect of salt stress on the enzymes of proline synthesis and oxidation in greengram (Phaseolus aureus Roxb.) seedlings. J. Plant Physio. 141(5): 621?623.
DOI: 10.1016/S0176-1617(11)80466-9View Article
Google Scholar
Suriyan, C.U. and K. Chalermpol. 2009. Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak. J. Bot. 41: 87?98.
Timmusk, S. and G.H. Wagner. 1999. The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12(11): 951?959.
DOI: 10.1094/MPMI.1999.12.11.951View Article
Google Scholar
Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Meth. Enzymol. 428: 419?438.
DOI: 10.1016/S0076-6879(07)28024-3View Article
Google Scholar
Velikova, V., I. Yordanov, A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid raintreated bean plants: protective role of exogenous polyamines. Plant Sci. 151(1): 59?66.
DOI: 10.1016/S0168-9452(99)00197-1View Article
Google Scholar
Wang, W., Z. Wu, Y. He, Y. Huang, X. Li, B.C. Ye. 2018. Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicol. Environ. Saf. 164:520?529.
DOI: 10.1016/j.ecoenv.2018.08.070View Article
Google Scholar
Yildirim, E. and I. Guvenc. 2006. Salt tolerance of pepper cultivars during germination and seedling growth. Turk. J. Agric. For. 30(5): 347?353.
Yildirim, E., M. Turan, M. Ekinci, A. Dursun, A. Gunes, M.F. Donmez. 2015. Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Rom. Biotechnol. Lett. 20(6): 10929?10935.
Yildirim, E., M. Turan, M. Ekinci, A. Dursun, R. Cakmakci. 2011. Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci. Res. Essays 6(20): 4389?4396.
DOI: 10.5897/SRE11.219View Article
Google Scholar
Yildirim, E., M. Turan, M.F. D?nmez. 2008. Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Bucharest University Roumanian Society of Biological Sciences 13(5): 3933?3943.
Zhang, X.M., Z.H. Zhang, X.Z. Gu, S.L. Mao, X.X. Li, J. Chad?uf, A. Palloix, L. Wang, B.X. Zhang. 2016. Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution. J. Integr. Agric. 15(9): 1991?2001.
DOI: 10.1016/S2095-3119(16)61364-3View Article
Google Scholar