Research Paper

Using mosses and lichen to study roadside pollution and the correlation of toxic elements and elevation in a mountainous area of Guizhou, China

Haifeng Ding, Zhaohui Zhang, Zhihui Wang, Qimei Wu, Dengfu Wang

Published on: 14 June 2022

Page: 351 - 360

DOI: 10.6165/tai.2022.67.351

Abstract

In this study, three moss species (Bryum argenteum, Rhynchostegium subspeciosum and Orthotrichum dasymitrium) and one lichen species (Parmelia saxatilis) were sampled to monitor the levels of toxic elements along a section of a gorge road for assessing the enrichment ability of these species and the effects of toxic elements at different elevations. Hierarchical clustering was used to classify samples based on geographic data and ICP-MS to determine the contents of toxic elements in each plant. Based on the obtained levels of enrichment factors (EF), metal accumulation index (MAI) and geoaccumulation index (Igeo), Bryum argenteum (highest MAI and Igeo) was identified as the most suitable biomonitoring species. PMF source analysis showed that the main pollution sources were traffic dust (45%) and other traffic emissions (43%). Road pollution was alarming as high Pb, As and Cr levels were detected as the most important pollutants. The levels of toxic element depositions along the road of the Karst gorge area increased with rising elevation. The vertical distribution of pollutants was affected by temperature, topography, dominant winds and pollutant emissions. However, some variations in the distribution in similar areas were also observed.

Keyword: Epiphytes, mosses and lichen, toxic elements, source analysis, atmospheric contamination

Literature Cited

Abas, A. and L. Din. 2020. Heavy metal concentration assessment using transplanted lichen Usnea misaminensis at Pasir Gudang, Johor. IOP Conference Series: Earth Environ Sci Trans R Soc Edinb 549(1): 12?63.
DOI: 10.1088/1755-1315/549/1/012063View Article Google Scholar

Achotegui-Castells, A., J. Sardans, ?. Ribas and J. Pe?uelas. 2013. Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environ. Monit. Assess. 185(1): 615?629.
DOI: 10.1007/s10661-012-2579-zView Article Google Scholar

Asakawa, Y. and A. Ludwiczuk. 2017. Chemical constituents of bryophytes: structures and biological activity. J. Nat. Prod. 81(3): 641?660.
DOI: 10.1021/acs.jnatprod.6b01046View Article Google Scholar

Bajpai, R., V. Shukla, D.K. Upreti and M. Semwal. 2014. Selection of suitable lichen bioindicator species for monitoring climatic variability in the Himalaya. Environ. Sci. Pollut. Res. 21(19): 11380?11394.
DOI: 10.1007/s11356-014-3063-9View Article Google Scholar

Barbieri, M. 2016. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys. 5(1): 1000237.
DOI: 10.4172/2381-8719.1000237View Article Google Scholar

Bargagli, R. 2016. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 572: 216?231.
DOI: 10.1016/j.scitotenv.2016.07.202View Article Google Scholar

Bing, H., Y. Wu, J. Zhou, R. Li, J. Luo and D. Yu. 2016. Vegetation and cold trapping modulating elevation-dependent distribution of trace metals in soils of a high mountain in Eastern Tibetan Plateau, Sci. Rep. 6(1): 24081.
DOI: 10.1038/srep24081View Article Google Scholar

Bishop, G.A., J.A. Morris, D.H. Stedman, L.H. Cohen, R.J. Countess, S.J. Countess and S. Scherer. 2001. The effects of altitude on heavy-duty diesel truck on-road emissions. Environ. Sci. Technol. 35(8): 1574?1578.
DOI: 10.1021/es001533aView Article Google Scholar

Bourliva, A., C. Christophoridis, L. Papadopoulou, K. Giouri, A. Papadopoulos, E. Mitsika and K. Fytianos. 2017. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ. Geochem. Health. 39(3): 611?634.
DOI: 10.1007/s10653-016-9836-yView Article Google Scholar

Bownik, A. and D. Wlodkowic. 2021. Advances in real-time monitoring of water quality using automated analysis of animal behaviour. Sci. Total Environ. 789: 147796.
DOI: 10.1016/j.scitotenv.2021.147796View Article Google Scholar

Chen, J., Y.X. Luo and X.B. Zheng 2013. Spatial and temporal distribution and variation of fog in Guizhou Province in recent 50 years. Plateau and Mountain Meteorology Research. 33: 46?50.

Chen, X.D. and X.W. Lu. 2017. Source apportionment of soil heavy metals in city residential areas based on the receptor model and geostatistics. Environmental Science 38: 2513?2521.

Culicov, O.A. and L. Yurukova. 2006. Comparison of element accumulation of different moss- and lichen-bags, exposed in the city of Sofia (Bulgaria). J. Atmos Chem. 55(1): 1?12.
DOI: 10.1007/s10874-005-9002-xView Article Google Scholar

Czerepko, J., R. Gawry?, R. Szymczyk, W. Pisarek, M. Janek, A. Haidt and C. Cacciatori. 2021. How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Biaowiea forest. Ecol. Indic. 125: 107532.
DOI: 10.1016/j.ecolind.2021.107532View Article Google Scholar

Eldridge, D.J. and M.E. Tozer. 2009. Environmental factors relating to the distribution of terricolous bryophytes and lichens in Semi-Arid Eastern Australia. The Bryologist. 100(1): 28?39.
DOI: 10.2307/3244384View Article Google Scholar

Evangeliou, N., H. Grythe, Z. Klimont, C. Heyes, S. Eckhardt, S. Lopez-Aparicio and A. Stohl. 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11(1): 416?424.
DOI: 10.1038/s41467-020-17201-9View Article Google Scholar

Fan, X., Z. Ma, Y. Zou, J. Liu and J. Hou. 2021. Investigation on the adsorption and desorption behaviors of heavy metals by tire wear particles with or without UV ageing processes. Environ. Res. 195: 110858.
DOI: 10.1016/j.envres.2021.110858View Article Google Scholar

Gallego-Cartagena, E., H. Morillas, J.A. Carrero, J.M. Madariaga and M. Maguregui. 2020. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. Chemosphere. 263: 128190.
DOI: 10.1016/j.chemosphere.2020.128190View Article Google Scholar

Gao, Q. 1996. Flora bryophytarum sinicorum. Science Press. 2: 54–257.

Godinho, R.M., T.G. Verburg, M.C. Freitas and H.T. Wolterbeek. 2009. Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal. Environ. Pollut. 157(1): 102?109.
DOI: 10.1016/j.envpol.2008.07.021View Article Google Scholar

Hanfi, M.Y., M.Y.A. Mostafa and M.V. Zhukovsky. 2019. Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environ. Monit. Assess. 192: 32.
DOI: 10.1007/s10661-019-7947-5View Article Google Scholar

Heidari, M., T. Darijani and V. Alipour. 2021. Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere. 273: 129656.
DOI: 10.1016/j.chemosphere.2021.129656View Article Google Scholar

Hu, R.L. and Y.F. Wang. 2005. Flora bryophytarum sinicorum. Science Press. 7: 212?254.

International Agency for Research on Cancer (IARC). 1989. Some organic solvents, resin monomers and related compounds. In: Pigments and Occupational Exposures in Paint Manufacture and Painting. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 47: 291.

International Agency for Research on Cancer (IARC). 2012. Arsenic, Metals, Fibres, and Dusts. IARC monographs on the evaluation of carcinogenic risks to humans. 100: 501.

Koroleva, Y. and V. Revunkov. 2017. Air pollution monitoring in the south-east baltic using the epiphytic lichen hypogymnia physodes. ATMOS. 8(7): 119.
DOI: 10.3390/atmos8070119View Article Google Scholar

Kumari, S., M.K. Jain and S.P. Elumalai. 2021. Assessment of pollution and health risks of heavy metals in particulate matter and road dust along the road network of Dhanbad, India. J. Health Pollut. 11(29): 210305?210305.
DOI: 10.5696/2156-9614-11.29.210305View Article Google Scholar

Lang, M.N., A. Gohm and J.S Wagner. 2015. The impact of embedded valleys on daytime pollution transport over a mountain range. Atmospheric Chem. Phys. 15(20): 14315?14356.
DOI: 10.5194/acp-15-11981-2015View Article Google Scholar

Liu, R., Z.H. Zhang, J.C. Shen and Z.H. Wang. 2018a. Analysis of metal content and vertical stratification of epiphytic mosses along a Karst Mountain highway. Environ. Sci. Pollut. Res. 25(29): 29605?29613.
DOI: 10.1007/s11356-018-2883-4View Article Google Scholar

Liu, R., Z.H. Zhang, J.C. Shen and Z.H. Wang. 2018a. Monitoring of heavy metal concentrations and source apportionment in “24-Curve” Highway region using epiphytic mosses. Chinese J. Ecol. 37: 1723?1729.

Liu, Y.J., Y.G. Zhu and H. Ding. 2007. Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). Environ. Pollut. 145(2): 387?390.
DOI: 10.1016/j.envpol.2006.05.010View Article Google Scholar

Millhollen, A.G., M.S. Gustin and D. Obrist. 2006. Foliar mercury accumulation and exchange for three tree species. Environ. Sci. Technol. 40(19): 6001?6006.
DOI: 10.1021/es0609194View Article Google Scholar

Musa, A.A., S.M. Hamza and R. Kidak. 2019. Street dust heavy metal pollution implication on human health in Nicosia, North Cyprus. Environ. Sci. Pollut. Res. 26(28): 28993?29002.
DOI: 10.1007/s00244-006-0028-0View Article Google Scholar

Niemel?, M., J. Piispanen, J. Poikolainen and P. Per?m?ki. 2007. Preliminary study of the use of terrestrial moss (Pleurozium schreberi) for biomonitoring traffic-related Pt and Rh Deposition. Arch. Environ. Contam. Toxicol. 52(3): 347?354.
DOI: 10.1007/s00244-006-0028-0View Article Google Scholar

Nogami, Y., I. Choji, H. Makiko, F. Fukuichi and I. Takeshi. 1987. An evaluation of the air pollution by using heavy metals accumulation in Bryum argenteum Hedw. Japan Society for Atmospheric Environment. 22: 347?354.

Norris, G., R. Duvall and S. Brown. 2014. In: U. S. E. P. Agency, EPA Office of Research and Development (Ed.), EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide.

Ogundele, D.T., A.A. Adio and O.E. Oludele. 2015 Heavy metal concentrations in plants and soil along heavy traffic roadsin north central Nigeria. J. Environ. Anal. Toxicol. 5(6): 1000334.
DOI: 10.4172/2161-0525.1000334View Article Google Scholar

Pariente, S., Z. Helena, S. Eyal, F.G. Anatoly and Z. Michal. 2019. Road side effect on lead content in sandy soil. Catena 174: 301?307.
DOI: 10.1016/j.catena.2018.11.014View Article Google Scholar

Parviainen, A., E.M. Papaslioti, M. Casares-Porcel and C.J. Garrido. 2020. Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators. Environ. Pollut. 263: 114482.
DOI: 10.1016/j.envpol.2020.114482View Article Google Scholar

Robinson, H.K. and E.A. Hasenmueller. 2017. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603-604: 94–108.
DOI: 10.1016/j.scitotenv.2017.05.244View Article Google Scholar

Shi, T., T. Ming, Y. Wu, C. Peng, Y. Fang and R. de Richter. 2020. The effect of exhaust emissions from a group of moving vehicles on pollutant dispersion in the street canyons. Build Environ. 181: 107120.
DOI: 10.1016/j.buildenv.2020.107120View Article Google Scholar

Shoham-Frider, E., Y. Gertner, T. Guy-Haim, B. Herut, N. Kress, E. Shefer and J. Silverman. 2020. Legacy groundwater pollution as a source of mercury enrichment in marine food web, Haifa Bay, Israel. Sci. Total Environ. 714: 136711.
DOI: 10.1016/j.scitotenv.2020.136711View Article Google Scholar

Singh, V., A. Biswal, A.P. Kesarkar, S. Mor and K. Ravindra. 2019. High resolution vehicular PM10 emissions over megacity Delhi: Relative contributions of exhaust and non-exhaust sources. Sci. Total Environ. 699: 134273.
DOI: 10.1016/j.scitotenv.2019.134273View Article Google Scholar

Sutherland, R.A. 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Econ. Environ. Geol. 39(6): 611?627.
DOI: 10.1007/s002540050473View Article Google Scholar

Tchounwou, P.B., C.G. Yedjou, A.K. Patlolla, D.J. Sutton 2012. Heavy metal toxicity and the environment. In: Luch, A. (Ed.), Molecular, Clinical and Environmental Toxicology. Experientia Supplementum vol 101. Springer, Basel. 133?164pp.
DOI: 10.1007/978-3-7643-8340-4_6View Article Google Scholar

Timothy, N. and E.T. Williams. 2019. Environmental pollution by heavy metal: an overview. International Journal of Environmental Chemistry 3(2): 72?82.
DOI: 10.11648/j.ijec.20190302.14View Article Google Scholar

Wu, P.C. 2002. Flora bryophytarum sinicorum vol 6. Science Press, Beijing.

Wu, P.C. and Y. Jia. 2011. Flora bryophytarum sinicorum vol 5. Science Press, Beijing.

Wu, P.C. and Y. Jia. 2017. Flora bryophytarum sinicorum vol: 8. Science Press, Beijing.

Xu, S., Z.H. Zhang and Z.H. Wang. 2021. Effects of heavy metals on moss diversity and analysis of moss indicator species in Nancha manganese mining area, Southwestern China. Glob. Ecol. Conserv. 28: e01665.
DOI: 10.1016/j.gecco.2021.e01665View Article Google Scholar

Zardi, D. and C.D. Whiteman. 2013. Diurnal Mountain Wind Systems. In: Chow, F., De Wekker, S., Snyder, B. (eds) Mountain Weather Research and Forecasting. Springer Atmospheric Sciences. Springer, Dordrecht. pp 35–119.
DOI: 10.1007/978-94-007-4098-3_2View Article Google Scholar

Zhang, H., R.S. Yin, X.B. Feng, J. Sommar, C.W.N. Anderson, A. Sapkota, X.W. Fu and T. Larssen. 2013. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Sci. Rep. 3(1): 809?822.
DOI: 10.1038/srep03322View Article Google Scholar

Zhao, L., G. Hu, Y. Yan, R. Yu, J. Cui, X. Wang and Y. Yan. 2019. Source apportionment of heavy metals in urban road dust in a continental city of Eastern China: using Pb and Sr isotopes combined with multivariate statistical analysis. Atmospheric Environ. 201: 201?211.
DOI: 10.1016/j.atmosenv.2018.12.050View Article Google Scholar