Research Paper

Leaf surface secretion of flavonoids in Myricaria bracteata and M. longifolia (Tamaricaceae)

Evgeniya A. Karpova, Alexander A. Krasnikov, Elena M. Lyakh, Alexander A. Chernonosov

Published on: 03 August 2022

Page: 413 - 421

DOI: 10.6165/tai.2022.67.413


Flavonoids of the salt glands and tissues of Myricaria bracteata and Myricaria longifolia were studied by histochemical assays and chromatographic analysis. Histochemical staining indicated flavonoid accumulation in the salt glands, within vascular bundles, and in subepidermal parenchyma layers of the leaves. Exudate flavonoids of the leaves were characterized for the first time. Phenolic profiles of these species proved to be similar and showed high levels of ellagic acid and total flavonoids, including hyperoside, isoquercitrin, astragalin, avicularin, isorhamnetin 3-O-rutinoside, quercetin, naringenin, and luteolin. Astragalin and hyperoside are major phenolic compounds in the leaves. The latter were found to constitute ~0.2−0.3% of total phenolics of the leaves; meanwhile, exudate flavonoids make up ~0.5% of total flavonoids. The high similarity of phenolic composition between the whole-leaf extracts and the exudates indicates the homogeneous origin of these compounds. The observed tissue distribution of flavonoids and their presence in the salt glands confirm the role of these glands in leaf surface secretion of flavonoids.

Keyword: Myricaria, Tamaricaceae, leaf exudate, salt glands, flavonoids

Literature Cited

Agati, G., P. Matteini, A. Goti and M. Tattini. 2007. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174(1): 77–89.
DOI: 10.1111/j.1469-8137.2007.01986.xView Article Google Scholar

Brent, L.C., J.L. Reiner, R.R. Dickerson and L.C. Sander. 2014. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry. Anal. Chem. 86(15): 7328–7336.
DOI: 10.1021/ac403937eView Article Google Scholar

Brilli, F., S. Fares, A. Ghirardo, P. de Visser, V. Calatayud, A. Mu?oz, I. Annesi-Maesano, F. Sebastiani, A. Alivernini, V. Varriale and F. Menghini. 2018. Plants for Sustainable Improvement of Indoor Air Quality. Trends Plant Sci. 23(6): 507–512.
DOI: 10.1016/j.tplants.2018.03.004View Article Google Scholar

Calquist, S. 2010. Caryophyllales: a key group for understanding wood anatomy character states and their evolution. Bot. J. Linn. Soc. 164(4): 342–393.
DOI: 10.1111/j.1095-8339.2010.01095.xView Article Google Scholar

Chernonosov, A.A., E.A. Karpova and E.M. Lyakh. 2017. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev. Bras. Farmacogn. 27(5): 576–579.
DOI: 10.1016/j.bjp.2017.07.001View Article Google Scholar

Cowan, M.M. 1999. Plant products as antimicrobial agents. Clin Microbiol Rev. 12(4): 564–582.
DOI: 10.1128/CMR.12.4.564View Article Google Scholar

Donaldson, L. and N. Williams. 2018. Imaging and Spectroscopy of Natural Fluorophores in Pine Needles. Plants (Basel). 7(1): 10.
DOI: 10.3390/plants7010010View Article Google Scholar

D?rken, V.M., R.F. Parsons and A.T. Marshall. 2017. Studies on the foliage of Myricaria germanica (Tamaricaceae) and their evolutionary and ecological implications. Trees 31(3): 997–1013.
DOI: 10.1007/s00468-017-1523-9View Article Google Scholar

Greenaway, W. 1992. Compositions of Bud and Leaf Exudates of Some Populus Species Compared. Zeitschrift f?r Naturforschung C. 47(5-6): 329–334.
DOI: 10.1515/znc-1992-0602View Article Google Scholar

ICH. 2005. ICH Harmonised Tripartite Guideline - Validation of analytical procedures: text and methodology Q2(R1). ( Accessed 20 February 2021.

Iwashina, T. 2013. Flavonoid Properties of five Families newly Incorporated into the Order Caryophyllales (Review). Bull. Natl. Mus. Nat. Sci., Ser. B. 39: 25–51.

Karker, M., N. De Tommasi, A. Smaoui, C. Abdelly, R. Ksouri and A. Braca. 2016. New sulphated flavonoids from tamarix africana and biological activities of its polar extract. Planta Med. 82(15): 1374–1380.
DOI: 10.1055/s-0042-111520View Article Google Scholar

Karpova, E.A., A.A. Krasnikov, T.D. Fershalova, E.V. Baikova, A.A. Petruk and Y.L. Yakimova. 2019. Phenolic compounds and antimicrobial properties of Begonia grandis Dryand. subsp. grandis leaves. Bot. Pac. 8: 51–61.
DOI: 10.17581/bp.2019.08202View Article Google Scholar

Kuster, V.C., L.C. Da Silva and R.M.S.A. Meira. 2020. Anatomical and histochemical evidence of leaf salt glands in Jacquinia armillaris Jacq. (Primulaceae). Flora 262: 151493.
DOI: 10.1016/j.flora.2019.151493View Article Google Scholar

Li, Z., P. Xue, H. Xie, X. Li and M. Xie. 2010. Chemical constituents from Myricaria alopecuroides. Zhongguo Zhong Yao Za Zhi 35(7): 865–868. (In Chinese)
DOI: 10.4268/cjcmm20100713View Article Google Scholar

Liu, J.-B., Y.-S. Ding, Y. Zhang, J.-B. Chen, B.-S. Cui, J.-Y. Bai, M.-B. Lin, Q. Hou, P.-C. Zhang and S. Li. 2015. Anti-inflammatory Hydrolyzable Tannins from Myricaria bracteata. J. Nat. Prod. 78(5): 1015–1025.
DOI: 10.1021/np500953eView Article Google Scholar

Lyakh, E.M. 2006. Genus Myricaria Desv. In: Pe?kova, G. A., et al., (eds.). Science Publishers, pp 101–103: Enfield, NH.

Matias, L.J., M.O. Mercadante-Sim?es, V.A. Royo, L.M. Ribeiro, A.C. Santos and J.M. Fonseca. 2016. Structure and histochemistry of medicinal species of Solanum. Rev. Bras. Farmacogn. 26(2): 147–160.
DOI: 10.1016/j.bjp.2015.11.002View Article Google Scholar

Muravnik, L.E., O.V. Kostina and A.L. Shavarda. 2016. Glandular trichomes of Tussilago Farfara (Senecioneae, Asteraceae). Planta 244(3): 737–752.
DOI: 10.1007/s00425-016-2539-xView Article Google Scholar

Muravnik, L.E. and A.L. Shavarda. 2012. Leaf glandular trichomes in Empetrum nigrum. Morphology, histochemistry, ultrastructure and secondary metabolites. Nord. J. Bot. 30(4): 470–481.
DOI: 10.1111/j.1756-1051.2011.01322.xView Article Google Scholar

Nikolova, M., R. Gevrenova and S. Ivancheva. 2003. External flavonoid aglycones from Veronica chamaedrys L. (Scrophulariaceae). Acta Pharm. 53: 145–149.

Obmann, A., B. Mraz, B. Kubasa, M. Zehl, C. Kletter and S. Glasl. 2010. Phytochemical profiling of the Mongolian medicinal plant Myricaria longifolia Ehrenb. Planta Med. 76(12): 138.
DOI: 10.1055/s-0030-1264436View Article Google Scholar

Oliveira Ribeiro, A.D., S.L. Goulart, F.A. Mori and A.H. Fonseca Castro. 2014. Tree Crown Variation and Seasonal in the Phenolic Compounds Content of Stryphnodendron adstringens (Mart) Coville Leaves. AJPS. 5(19): 2904–2912.
DOI: 10.4236/ajps.2014.519305View Article Google Scholar

Parmar, V.S., K.S. Bisht, S.K. Sharma, R. Jain, P. Taneja, S. Singh, O. Simonsen and P.M. Boll. 1994. Highly oxygenated bioactive flavones from Tamarix. Phytochemistry 36(2): 507–511.
DOI: 10.1016/S0031-9422(00)97104-8View Article Google Scholar

Ranocha, P., M. Chabannes, S. Chamayou, S. Danoun, A. Jauneau, A.-M. Boudet and D. Goffner. 2002. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129(1): 145–155.
DOI: 10.1104/pp.010988View Article Google Scholar

Silva, W.L.D., M. F.A. Cruz, A.A. Fortunato and F.?. Rodrigues. 2015. Histochemical aspects of wheat resistance to leaf blast mediated by silicon. Sci. Agric. (Piracicaba, Braz.). 72(4): 322–327.
DOI: 10.1046/j.1469-8137.2000.00666.xView Article Google Scholar

Soukupov?, J., M. Cvikrov?, J. Albrechtov?, B.N. Rock and J. Eder. 2000. Histochemical and biochemical approaches to the study of phenolic compounds and peroxidases in needles of Norway spruce (Picea abies). New Phytol. 146(3): 403–414.
DOI: 10.1046/j.1469-8137.2000.00666.xView Article Google Scholar

Tattini, M., E. Gravono, P. Pinelli, N. Mulinacci and A. Romani. 2000. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol. 148(1): 69–77.
DOI: 10.1046/j.1469-8137.2000.00743.xView Article Google Scholar

Tattini, M., P. Matteini, E. Saracini, M.L. Traversi, C. Giordano and G. Agati. 2007. Morphology and biochemistry of non-glandular trichomes in Cistus salvifolius L. leaves growing in extreme habitats of the Mediterranean basin. Plant Biol. (Stuttg). 9(3): 411–419.
DOI: 10.1055/s-2006-924662View Article Google Scholar

Turner, T.R., E.K. James and P.S. Poole. 2013. The plant microbiome. Genome Biol. 14(6): 209.
DOI: 10.1186/gb-2013-14-6-209View Article Google Scholar

Usta, C., S. Ozdemir, M. Schiariti and P.E. Puddu. 2013. The pharmacological use of ellagic acid-rich pomegranate fruit. Int J Food Sci Nutr. 64(7): 907–913.
DOI: 10.3109/09637486.2013.798268View Article Google Scholar

Valant-Vetschera, K. M. and B. Brem. 2006. Chemodiversity of exudate flavonoids, as highlighted by selected publications of Eckhard Wollenweber. Nat. Prod. Commun. 1(11): 921–926.
DOI: 10.1177/1934578X0600101102View Article Google Scholar

Valant-Vetschera, K. M., J. N. Roitman and E. Wollenweber. 2003. Chemodiversity of exudate flavonoids in some members of the Lamiaceae. Biochem. Syst. Ecol. 31(11): 1279–1289.
DOI: 10.1016/S0305-1978(03)00037-1View Article Google Scholar

Valkama, E., J.-P. Salminen, J. Koricheva and K. Pihlaja. 2003. Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish birch species. Ann. Bot. 91(6): 643–655.
DOI: 10.1093/aob/mcg070View Article Google Scholar

Valkama, E., J.-P. Salminen, J. Koricheva and K. Pihlaja. 2004. Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Ann. Bot. 94(2): 233–242.
DOI: 10.1093/aob/mch131View Article Google Scholar

Wang, Y.-Z., C.-Y. Guo, H.-G. Zhong, W.-N. Zhang, D.-L. Wang, X. Wang and F.-H. Dong. 2008. In vivo effects of Pain Relieving Plaster on closed soft tissue injury in rabbit ears. BMC Complement Altern. Med. 8(1): 51.
DOI: 10.1186/1472-6882-8-51View Article Google Scholar

Wollenweber, E., M. Christ, R.H. Dunstan, J.N. Roitman and J.F. Stevens. 2005a. Exudate flavonoids in some Gnaphalieae and Inuleae (Asteraceae).Zeitschrift f?r Naturforschung C 60(9-10): 671–678.
DOI: 10.1515/znc-2005-9-1003View Article Google Scholar

Wollenweber, E., M. D?rsam, M. D?rr, J.N. Roitman and K.M. Valant-Vetschera. 2005b. Chemodiversity of surface flavonoids in Solanaceae. Zeitschrift f?r Naturforschung C 60(9-10): 661–670.
DOI: 10.1515/znc-2005-9-1002View Article Google Scholar

Zhang, Y., Y. Yuan, B. Cui and S. Li. 2011. Study on chemical constituents from ethyl acetate extract of Myricaria bracteata. Zhongguo Zhong Yao Za Zhi 36(8): 1019–1023. (In Chinese)
DOI: 10.4268/cjcmm20110816View Article Google Scholar

Zhao, D.B., X.H. Liu, S.Y. Cui, T. Wang and H.Q. Wang. 2005. Separation and Determination of Six Active Components in Two Myricaria Plants by Capillary Chromatography. Chromatographia 61(11-12): 643–646.
DOI: 10.1365/s10337-005-0544-5View Article Google Scholar

Zhou, R., T. Wang and X.-Z. Du. 2006. Studies on chemical constituents in herb of Myricaria bracteata. Zhongguo Zhong Yao Za Zhi 31(6): 474–476. (In Chinese)