Research Paper

Molecular phylogenetic relationships and taxonomy position of 161 Camellia species in China

Zhen Pang, Yi-Ling Wang, Nitin Mantri, Yang Wang, Xue-Jun Hua, Yan-Ping Quan, Xuan Zhou, Zheng-Dong Jiang, Zhe-Chen Qi, Hong-Fei Lu

Published on: 24 October 2022

Page: 560 - 570

DOI: 10.6165/tai.2022.67.560

Abstract

Camellia is the largest and most important genus in the family Theaceae, with many species being of great economic, ornamental and ecological value. However, the phylogenetic resolution of these species has been difficult due to interspecific hybridization and polyploidy. Consequently, the interspecies relationships of the genus Camellia are still hotly debated. In this study, four chloroplast genomic regions (matK, rbcL, ycf1, trnL-F) were used as markers among 161 species representing all four sub-genera within this genus to investigate the phylogeny and interspecies relationship of the genus Camellia. The results showed that the 161 species of the genus Camellia could be grouped into 13 clades (A-M). Clades A and B mainly consisted of sect. Camellia. Clades C and I were made up of sect. Theopsis and sect. Eriandria. Clades D and J were composed of species from sect. Thea. Clade F consisted of the sect. Paracamellia species, whilst Clades G and M included sect. Furfuracea species. Clade H contained sect. Tuberculata and most species of sect. Pseudocamellia, whereas Clades K and L comprised the sect. Chrysantha species. These results supported that 161 Camellia species form paraphyletic groups, rather than a monophyletic group. And they demonstrated that the taxonomic position of related species could be resolved to some extent via sequencing markers in organelle genome, thus providing valuable cytoplasmic genetic information or maternal genetic information for accurately identifying species, clarifying taxonomy and reconstructing the phylogeny of various Camellia species.

Keyword: Camellia, chloroplast gene, matK, molecular phylogeny, rbcL, section, taxonomy position, trnL-F, ycf1

Literature

Badr, A., N. El-Sherif, S. Aly, S.D. Ibrahim and M. Ibrahim 2020. Genetic diversity among selected Medicago sativa cultivars using inter-retrotransposon-amplified polymorphism, chloroplast DNA barcodes and morpho-agronomic trait analyses. Plants-Basel 9(8): 995.
DOI: 10.3390/plants9080995View Article Google Scholar

Cabrera, C., R. Artacho and R. Gim?nez 2006. Beneficial effects of green tea - a review. J. Am. Coll. Nutr. 25(2): 79?99.
DOI: 10.1080/07315724.2006.10719518View Article Google Scholar

Chang, H.T. 1981. A taxonomy of the genus Camellia. J. Sun. Yatsen. Univ. 1: 1?180.

Chang, H.T. 1996. Diagnosis on the systematic development of Theaceae - the taxonomic problem of section Glaberrima Chang of Camellia. Acta Sci. Nat. Univ. Sunyatseni 35: 87?90.

Chang, H.T. 1998. Theaceae. in: Delectis Florae Republicae Popularis Sinicae, Agendae Academiae Sinicae Edita, Tomus (ed.), Flora of Reipublicae Popularis Sinicae, vol. 49(3): 1?251. Science Press, Beijing.

Chen, H.L., S.L. Liu, Q.Q. Ye, Y.B. Lu and S.Q. Tang 2021. Inferring species relationships among Camellia chrysanthoides and its closely related species for developing conservation strategies. Plant Spec. Biol. 36(3): 390?398.
DOI: 10.1111/1442-1984.12320View Article Google Scholar

Chen, L., Z.X. Zhou and Y.J. Yang 2007. Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154(1-2): 239?248.
DOI: 10.1007/s10681-006-9292-3View Article Google Scholar

Chung, M.Y., B.K. Epperson and M.G. Chung 2003. Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57(1): 62?73.
DOI: 10.1111/j.0014-3820.2003.tb00216.xView Article Google Scholar

Cohen-Stuart, C.P. 1916. Voorbereidende onderzoekingen ten dienste van de selecte der theeplant. Meded. Proefst. Thee. 40: 1?328.

Fang, W., J.B. Yang, S.X. Yang and D.Z. Li 2010. Phylogeny of Camellia sect. Longipedicellata, Chrysantha, and Longissima (Theaceae) based on sequence data of four choloroplast DNA loci. Acta. Bot. Yunnan. 32(1): 1?13.
DOI: 10.3724/SP.J.1143.2010.00001View Article Google Scholar

Farris, J.S., M. K?llersj?, A.G. Kluge and C. Bult 1995. Testing significance of incongruence. Cladistics 10(3): 315–319.
DOI: 10.1111/j.1096-0031.1994.tb00181.xView Article Google Scholar

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783–791.
DOI: 10.2307/2408678View Article Google Scholar

Feng, J., L.L. Jiang, J.L. Zhang, H. Zheng, Y.F. Sun, S.N. Chen, M.L. Yu, W. Hu, D.F. Shi, X.H. Sun and H.F. Lu 2020. Nondestructive determination of soluble solids content and pH in red bayberry (Myrica rubra) based on color space. J. Food Sci. Tech. Mys. 57(12): 4541–4550.
DOI: 10.1007/s13197-020-04493-4View Article Google Scholar

Gramza, A. and J. Korczak. 2005. Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems. Trends Food Sci. Tech. 16(8): 351?358.
DOI: 10.1016/j.tifs.2005.02.004View Article Google Scholar

Huelsenbeck, J.P. and F. Ronquist 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754?755.
DOI: 10.1093/bioinformatics/17.8.754View Article Google Scholar

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Mentjies and A. Drummond 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647?1649.
DOI: 10.1093/bioinformatics/bts199View Article Google Scholar

Khan, N. and H. Mukhtar. 2007. Tea polyphenols for health promotion. Life Sci. 81(7): 519?533.
DOI: 10.1016/j.lfs.2007.06.011View Article Google Scholar

Kim, C., T. Deng, J. Wen, Z.L. Nie and H. Sun 2015. Systematics, biogeography, and character evolution of Deutzia (Hydrangeaceae) inferred from nuclear and chloroplast DNA sequences. Mol. Phylogenet. Evol. 87: 91?104.
DOI: 10.1016/j.ympev.2015.03.002View Article Google Scholar

Li, X.L., Z.Q. Fan, H.B. Guo, N. Ye, T. Lyu, W. Yang, J. Wang, J.-T. Wang, B. Wu, J. Li and H. Yin 2018. Comparative genomics analysis reveals gene family expansion and changes of expression patterns associated with natural adaptations of flowering time and secondary metabolism in yellow Camellia. Funct. Integr. Genomic. 18(6): 659?671.
DOI: 10.1007/s10142-018-0617-9View Article Google Scholar

Lim, M.S. and S.H. Choi 2018. Estimation of phylogeny of nineteen sedoideae species cultivated in Korea inferred from chloroplast DNA analysis. Horticult. J. 87(1): 132?139.
DOI: 10.2503/hortj.OKD-087View Article Google Scholar

Lin, X.Y., Q.F. Peng, H.F. Lu, Y.Q. Du and B.Y. Tang 2008. Leaf anatomy of Camellia sect. Oleifera and sect. Paracamellia (Theaceae) with reference to their taxonomic significance. J. Syst. Evol. 46(2): 183?193.

Linnaeus, C. 1753. Species plantarum. Vol I. Stockholm: Impensis Laurentii Salvii.

Lu, H.F., W. Jiang, M. Ghiassi, S. Lee and M. Nitin. 2012. Classification of Camellia (Theaceae) species using leaf architecture variations and pattern recognition techniques. PLoS One 7(1): e29704.
DOI: 10.1371/journal.pone.0029704View Article Google Scholar

Lu, H.F., J.B. Shen, X.Y. Lin and J.L. Fu. 2008. Relevance of fourier transform infrared spectroscopy and leaf anatomy for species classification in Camellia (Theaceae). Taxon 57(4): 1274?1288.
DOI: 10.1002/tax.574018View Article Google Scholar

Ly, N.S., V.D. Luong, T.H. Le, N.D. Do, N. Tran, A.D. Nguyen, T.L. Nguyen, C. Uematsu and H. Katayama 2022. Camellia annamensis (Theaceae), a new species from central Vietnam. Taiwania 67(2): 243?249.
DOI: 10.6165/tai.2022.67.243View Article Google Scholar

Melchior, H. 1925. Theaceae. pp. 109–154 in: Engler, A. and Prantl, K. (eds.), Die Nat?rlichen Pflanzenfamilien. II, vol. 21. W. Engelmann, Leipzip, Germany.

Miller, M.A., W. Pfeiffer and T. Schwartz 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. pp. 1-8 in: Proceedings of the Gateway Computing Environments Workshop (GCE), vol. 14. New Orleans.
DOI: 10.1109/GCE.2010.5676129View Article Google Scholar

Ming, T.L. 1999. A systematic synopsis of the genus Camellia. Acta Bot. Yunnan 21: 149?159.

Ming, T.L. 2000. Monograph of the genus Camellia. Yunnan Science and Technology Press, Kunming.

Ming, T.L. and Y.C. Zhong 1993. A revision of genus Camellia sect. Tuberculata. Acta Bot.Yunnan 15: 123?130.

Moller, E.M., G. Bahnweg and H. Sandermann. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 20(22): 6115?6116.
DOI: 10.1093/nar/20.22.6115View Article Google Scholar

Nakai, T. 1940. A new classification of the Sino-Japanese genera and species which belong to the tribe Camellieae (II). J. Jap. Bot. 16: 27?35.

Prihatini, I., A.Y.P.B.C. Widyatmoko, I.L.G. Nurtjahjaningsih, V. Yuskianti and S.A. Danarto 2020. DNA barcoding of Pericopsis mooniana from two different populations in Indonesia based on rDNA ITS (Internal Transcribed Spacer). IOP Conference Series: MSE 935(1): 012024.
DOI: 10.1088/1757-899X/935/1/012024View Article Google Scholar

Ricardo, N.M.J. P?scoa, A.M. Teixeira and C. Sousa. 2019. Antioxidant capacity of Camellia japonica, cultivars assessed by near- and mid-infrared spectroscopy. Planta 249(4): 1053?1062.
DOI: 10.1007/s00425-018-3062-zView Article Google Scholar

Ronquist, F. and J.P. Huelsenbeck 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572?1574.
DOI: 10.1093/bioinformatics/btg180View Article Google Scholar

Saha, D., S. Mandal and A. Saha 2012. Copper induced oxidative stress in tea (Camellia sinensis) leaves. J. Environ. Biol. 33: 861?866.

Sealy, J.R. 1958. A revision of the genus Camellia. Royal Horticultural Society.

Shen, J.B., H.F. Lu, Q.F. Peng, J.F. Zheng and Y.M. Tian 2008. FTIR spectra of Camellia sect. Oleifera, sect. ParaCamellia, and sect. Camellia (Theaceae) with reference to their taxonomic significance. J. Syst. Evol. 46: 194?204.

Shi, S.H., S.Q. Tang, Y.Q. Chen, L.H. Qu and H.T. Chang. 1998. Phylogenetic relationships among eleven yellow-flowered Camellia species based on random amplified polymorphic DNA. Acta. Phytotax. Sin. 36: 314?322.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312?1313.
DOI: 10.1093/bioinformatics/btu033View Article Google Scholar

Taberlet, P., L. Gielly, H. Pautou and J. Bouvet 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17(5): 1105?1109.
DOI: 10.1007/BF00037152View Article Google Scholar

Tang, S.Q., S.H. Shi, Y. Zhong and Y. Wang 2004. Phylogenetic relationships of golden camellias (sect. Chrysantha, Camellia) in China: evidence from ITS sequences of nuclear ribosomal DNA. Guihaia 24: 488?492.

Vijayan, K., W.J. Zhang, and C.H. Tsou 2009. Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am. J. Bot. 96(7): 1348?1360.
DOI: 10.3732/ajb.0800205View Article Google Scholar

Wang, B., L.M. Han, C. Chen and Z.Z. Wang 2016. The complete chloroplast genome sequence of Dieffenbachia seguine (Araceae). Mitochondrial DNA 27(4): 2913?2914.
DOI: 10.3109/19401736.2015.1060436View Article Google Scholar

Wang, Y.S., L.P. Gao, Z.R. Wang, Y.J. Liu, M.L. Sun, D.Q. Yang, C.L. Wei, Y. Shan and T. Xia 2012. Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Sci. Hortic. 133: 72?83.
DOI: 10.1016/j.scienta.2011.10.017View Article Google Scholar

Wei, S.J., Y.B. Lu, Q.Q. Ye and S.Q. Tang. 2017. Population genetic structure and phylogeography of Camellia flavida (Theaceae) based on chloroplast and nuclear DNA sequences. Front. Plant Sci. 8:718.
DOI: 10.3389/fpls.2017.00718View Article Google Scholar

Wei, Z.Z., L.Q. Guo, J.F. Zhang, B.L. Li, D.Q. Zhang and H. Guo 2010. Phylogenetic relationship of Populus by trnL-F sequence analysis. Journal of Beijing Forestry University 32: 27?33.

Wilgenbusch, J.C., D.L. Warren and D.L. Swofford. 2004. AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. http://ceb.csit.fsu.edu/awty.

Xiao, T.J. and C.R. Parks 2002. Molecular analysis of genus Camellia. American Camellia Society: American Camellia Year-book, 52?58.

Yamada, K.D., K. Tomii and K. Katoh 2016. Application of the MAFFT sequence alignment program to large data - reexamination of the usefulness of chained guide trees. Bioinformatics 32(21): 3246?3251.
DOI: 10.1093/bioinformatics/btw412View Article Google Scholar

Yang, J.B., H.T. Li, S.X. Yang, D.Z. Li and Y.Y. Yang 2006. The application of four DNA sequences to studying molecular phylogeny of Camellia (Theaceae). Acta Bot. Yunnan 28: 108?114.

Yang, J.B., J. Yang, H.T. Li, Y. Zhao and S.X. Yang 2009. Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using FIASCO method. Conserv. Genet. 10(5): 1621?1623.
DOI: 10.1007/s10592-009-9814-3View Article Google Scholar

Yang, H., C.L. Wei, H.W. Liu, J.L. Wu, Z.G. Li, L. Zhang, J.B. Jian, Y.Y. Li, Y.L. Tai, J. Zhang, Z.Z. Zhang, C.J. Jiang, T. Xia and X.C. Wan 2016. Genetic divergence between Camellia sinensis and its wild relatives revealed via genome-wide SNPs from RAD sequencing. PLoS One 11(3): e0151424.
DOI: 10.1371/journal.pone.0151424View Article Google Scholar

Yang, J.B., S.X. Yang, H.T. Li, J. Yang and D.Z. Li 2014. Comparative chloroplast genomes of Camellia species. PLoS One 8(8): e73053.
DOI: 10.1371/journal.pone.0073053View Article Google Scholar

Yu, X.Q., E.D. Liu, Z.W. Liu, B.O. Xiao and S.X. Yang 2021. Camellia luteocalpandria (Theaceae), a new species and the first discovery of sect. Calpandria in China. Phytotaxa 489(2): 223?228.
DOI: 10.11646/phytotaxa.489.2.11View Article Google Scholar

Zhang, Q., Y. Liu and Sodmergen 2003. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 44(9): 941?951.
DOI: 10.1093/pcp/pcg121View Article Google Scholar

Zhang, W., S.L. Kan, H. Zhao, Z.Y. Li and X.Q. Wang 2014. Molecular phylogeny of tribe Theeae (Theaceae s.s.) and its implications for generic delimitation. PLoS One 9(5): e98133.
DOI: 10.1371/journal.pone.0098133View Article Google Scholar

Zhao, D.W., T.R. Hodkinson and J.A.N. Parnell 2022. Phylogenetics of global Camellia (Theaceae) based on three nuclear regions and its implications for systematics and evolutionary history. J. Syst. Evol. : jse 12837.
DOI: 10.1111/jse.12837View Article Google Scholar

Zhu, H., X.G. Yi, S.X. Zhu, H.C. Wang, Y.F. Duan and X.R. Wang. 2018. Analysis on relationship and taxonomic status of some species in subg.Cerasus koehne with chloroplast DNA atpB-rbcL fragment. Bull. Bot. Res. 38(1): 820?827.

Zou, J.B., X. Wang, L.L. Li and J.Q. Liu 2013. The combination of chloroplast and nuclear DNA fragments could improve the discrimination power for barcoding spruce (Picea) species. Plant Divers. Resour. 35: 375?385.