Research Paper

Subaerial cyanobacteria on the monuments and exterior surface of building facades of Odisha state, India

Smruti Mahanandia, Lakshmi Singh

Published on: 28 April 2023

Page: 193 - 204

DOI: 10.6165/tai.2023.68.193


Subaerial cyanobacteria on exterior surface of monuments and building facades have great importance under extreme conditions to enhance their colonization and diversity. Work was undertaken to assess the cyanobacteria diversity of Western Odisha especially concerning to monuments and building facades, and their comparative analysis. In total fifty subaerial cyanobacterial taxa belonging to 21 different genera of five orders were documented. Out of these 19 taxa were documented as new distributional records from the subaerial habitats of Odisha. Morphologically, 50% of taxa were filamentous heterocystous forms, followed by 26% colonial forms and 24% filamentous non-heterocystous forms. Diversity analysis revealed that cyanobacteria diversity was relatively higher in building facades rather than the monuments which may be resulted due to variation in substrate composition and exposure to climatic factors. A comparative distributional analysis of so far documented cyanobacteria from various subaerial habitats of Odisha revealed a habitat specificity is observed among the cyanobacteria from the monuments which represent biofilms with less common taxa.

Keyword: Subaerial biofilms, buildings and stone monuments, cyanobacteria diversity, diversity indices

Literature Cited

Adhikary, S.P., Keshari, N., Urz?, C. Philippis, R.D. 2015 Cyanobacteria in biofilms on stone temples of Bhubaneswar, Eastern India. Algol. Stud. 147(1): 67?93.
DOI: 10.1127/algol_stud/2015/0190View Article Google Scholar

Barberousse, H., Lombardo, R.J., Tell, G. Coute, A. 2006 Factors involved in the colonization of building facades by algae and cyanobacteria in France. Biofouling 22(2): 69?77.
DOI: 10.1080/08927010600564712View Article Google Scholar

C?mara, B., Suzuki, S., Nealson, K.H., Wierzchos, J., Ascaso, C., Artieda, O., De los R?os, A. 2014. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert. Int. Microbiol. 17(4): 235?247.

Del Mondo, A., Pinto, G., Carbone, D.A., Pollio, A., De Natale, A. 2018 Biofilm architecture on different substrates of an Oculatella subterranea (Cyanobacteria) strain isolated from Pompeii archaeological site (Italy). Environ. Sci. Pollut. Res. 25(26): 26079?26089.
DOI: 10.1007/s11356-018-2643-5View Article Google Scholar

Desikachary, T.V. 1959 Cyanophyta. I.C.A.R-Monograph on Algae. Indian Council of Agric.Res. New Delhi. 686.

Drovac-cik, A.V., Dublic, T.I., Stojanovic, D.B., Svircev, Z.B. 2007 The importance of extremophiles Cyanobacteria in the production of biologically active compounds. Zbornik Matice srpske za prirodne nauke 112: 57?66.
DOI: 10.2298/ZMSPN0712057DView Article Google Scholar

Ferrari, C., Santunione, G., Libbra, A., Muscio, A., Sgarbi, E., Siligardi, C., Barozzi, G. S. 2015 Review on the influence of biological deterioration on the surface properties of building materials: Organisms, Materials, and Methods. Int. J. Des. Nat. Ecodynamics 10(1): 21?39.
DOI: 10.2495/DNE-V10-N1-21-39View Article Google Scholar

Ferris, M. J., Hirsch, C.F. 1991 Method for isolation and purification of cyanobacteria. Appl. Environ. Microbiol. 57(5): 1448?1452.
DOI: 10.1128/aem.57.5.1448-1452.1991View Article Google Scholar

Gaylarde, C.C., Gaylarde, P.M. 2005 A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int. Biodeterior. Biodegradation 55(2): 131?139.
DOI: 10.1016/j.ibiod.2004.10.001View Article Google Scholar

Gaylarde, C.C. 2020 Influence of environment on microbial colonization of historic stone buildings with emphasis on cyanobacteria. Heritage 3(4): 1469?1482.
DOI: 10.3390/heritage3040081View Article Google Scholar

Jacob, J. M., Schmull, M., Villa, F. 2018 Biofilms and lichens on eroded marble monuments: Reconsidering cleaning. APT Bull. 49(2-3): 55?60.

Jeong, Y., Cho, S.H., Lee, H., Choi, H.K., Kim, D.M., Lee, C. G., Cho, S., Cho, B.K. 2020 Current status and future strategies to increase secondary metabolite production from cyanobacteria. Microbiology 8(12): 1?24.
DOI: 10.3390/microorganisms8121849View Article Google Scholar

Karande, C.V., Uttekar, V.G., Kamble, P., Karnade, C.T. 2012 Diversity of cyanobacteria in biofilms on building facades of Western Maharastra. Phykos 42(2): 54?58.

Keshari, N., Adhikary, S.P. 2014 Diversity of cyanobacteria on stone monuments and building facades of India and their phylogenetic analysis. Int. Biodeterior. Biodegradation 90: 45?51.
DOI: 10.1016/j.ibiod.2014.01.014View Article Google Scholar

Kom?rek, J., Anagnostidis, K. 1986. Modern approach to the classification system of the cyanophytes 2: Chroococcales. Algol. Stud. 43: 157?226.

Kom?rek, J., Anagnostidis, K. 1988 Modern approach to the classification system of cyanophytes 3-Oscillatoriales. Algol. Stud. 50-53: 327?472.

Kom?rek, J., Anagnostidis, K. 1989. Modern approach to the classification system of cyanophytes 4-Nostocales. Algol. Stud. 56: 247?345.

Kom?rek, J., Anagnostidis, K. 1999 Cyanoprokaryota.1. Chroococcales. S?sswasserflora von Mitteleuropa 19/1. Spektrum AkademischerVerlag, Heidelberg.

Kom?rek, J., Anagnostidis, K. 2005 Cyanoprokaryota. 2. Oscillatoriales. S?sswasserflora von Mitteleuropa 19/2. Spektrum Akademischer Verlag, Heidelberg.

Kom?rek, J., Hauer, T. 2013b database of cyanobacterial genera. World-wide electronic publication, University of South Bohemia and Institute of Botany ASCR.

La Cono, V., Urzi, C. 2003 Fluorescent in situ hybridization on samples taken with adhesive strips. J. Microbiol. Methods 55(1): 65?71.
DOI: 10.1016/S0167-7012(03)00115-5View Article Google Scholar

Macedo, F. M., Miller, Z. A., Dionisio, A., Jimenez-Siaz, C. 2009 Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiol. 155(11): 3476?3490.
DOI: 10.1099/mic.0.032508-0View Article Google Scholar

Margalef, R. 1958 Information theory in Ecology. General Systems 3: 36?71.

Miller, A. Z., Dion?sio, A., Laiz, L., Macedo, M.F., S?iz-Jim?nez, C. 2009 The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. Ann. Microbiol. 59(4): 705?713.
DOI: 10.1007/BF03179212View Article Google Scholar

Noeiaghaei, T., Mukherjee, A., Dhami, N., Chae, S.R. 2017 Biogenic deterioration of concrete and its mitigation technologies. Constr. Build. Mater. 149: 575?586.
DOI: 10.1016/j.conbuildmat.2017.05.144View Article Google Scholar

Ogawa, A., Celikkol-Aydin, S., Gaylarde, C., Baptista-Neto, J.A., Beech, I. 2017 Microbial communities on painted wet and dry external surfaces of a historic fortress in Niteroi, Brazil. Int. Biodeterior. Biodegradation. 123: 164?173.
DOI: 10.1016/j.ibiod.2017.06.018View Article Google Scholar

Ortega-Morales, O., Montero-Mu?oz, J.L., Baptista Neto, J.A., Beech, I.B., Sunner, J., Gaylarde, C. 2019 Deterioration and microbial colonization of cultural heritage stone buildings in polluted and unpolluted tropical and subtropical climates: A meta-analysis. Int. Biodeterior. Biodegradation 143(2): 104?734.
DOI: 10.1016/j.ibiod.2019.104734View Article Google Scholar

Pattnaik, S., Rath, C.C., Singh, L. 2021 Isolation, identification and screening for bioactive compounds with antimicrobial activities from sub-aerial cyanobacteria of eastern regions, Odisha. Int. J. Pharm. Sci. Res. 12(7): 3716?3730.

Pielou, E.C. 1966 The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131?144.
DOI: 10.1016/0022-5193(66)90013-0View Article Google Scholar

Pinna, D. 2021 Microbial growth and its effects on inorganic heritage materials. In E. Joseph ed. Microorganisms in the Deterioration and Preservation of Cultural Heritage. 3?25pp. Springer Cham, Switzerland.
DOI: 10.1007/978-3-030-69411-1_1View Article Google Scholar

Pradhan, P., Bhattacharyya, S., Deep, P.R., Sahu, J.K., Nayak, B. 2018 Biodiversity of cyanoprokaryota from monuments of western Odisha, India-I (Chroococales and Stigonematales). Phykos 48(1): 58?66.

Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y. 1979 Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1): 1?61.
DOI: 10.1099/00221287-111-1-1View Article Google Scholar

Rossi, F., Potrafka, R.M., Gracia-Pichel, F., De Philipps, R. 2012 The role of exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol. Biochem. 46: 33?40.
DOI: 10.1016/j.soilbio.2011.10.016View Article Google Scholar

Roy, A., Tripathy, P., Adhikary, S.P. 1997 Epilithic bluegreen algae/cyanobacteria from temples of India and Nepal. Presence of UV sunscreen pigments. Arch. F?rHydrobiol. Suppl. Algol. Stud. 86: 147?161.
DOI: 10.1127/algol_stud/86/1997/147View Article Google Scholar

Sahu, J.K., Nayak, B., Pradhan, P., Bhattacharyya, P. 2011 Epilithic cyanobacteria on temples of western Odisha. Biohelica: Sci. J. Biol. Sci. 2(1&2): 47?50.

Saini, D.K., Pabbi, S., Shukla, P. 2018 Cyanobacteria pigments: Perspectives and biotechnological approaches. Food Chem. Toxi. 120: 616?624.
DOI: 10.1016/j.fct.2018.08.002View Article Google Scholar

Samad, L.K., Adhikary, S.P. 2007 Cyanobacteria from two prehistoric caves of India. Nelumbo 49: 191?194.

Samad, L.K., Adhikary, S.P. 2008 Diversity of micro-algae and cyanobacteria on building facades and monuments in India. Algae 23(2): 91?114.
DOI: 10.4490/ALGAE.2008.23.2.091View Article Google Scholar

Shannon, C. E., Wiener, N. 1949 The Mathematical Theory of Communication. 117pp. The University of Illinois Press, Urbana, IL.

Simpson, E.H. 1949 Measurement of diversity. Nature 163(4148): 688.
DOI: 10.1038/163688a0View Article Google Scholar

Singh, J.A., Kumar, A., Rai, A.N., Singh, D.P. 2016 Cyanobacteria: A precious bioresource in agriculture, ecosystem and environmental sustainability. Front. Microbiol. 7: 1?19.
DOI: 10.3389/fmicb.2016.00529View Article Google Scholar

Sorensen, T. 1948 A method of establishing groups of equal amplitude in Plant Sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab. 5: 1?34.

Tiwari, A. K., Tiwari, B.S. 2020 Cyanotherapeutics: an emerging field for future drug discovery. Appl. Phycol. 1(1): 44?57.
DOI: 10.1080/26388081.2020.1744480View Article Google Scholar

Tripathy, P., Roy, A., Adhikary, S.P. 1997 Survey of epilithic blue green algae (cyanobacteria) from temples of India and Nepal. Algol. Stud. 87: 43?57.
DOI: 10.1127/algol_stud/86/1997/147View Article Google Scholar

Tripathy, P., Roy, A., An, N., Adhikary, S.P. 1999 Blue -green algae flora of rock surface of temples and monuments of India. Feddes Repert. 110(1-2): 133?144.
DOI: 10.1002/fedr.4921100121View Article Google Scholar

Urz?, C., Bruno, L., De Leo, F. 2018 Biodeterioration of paintings in caves, catacombs and other hypogean sites. In R. Mitchell, J. Clifford (eds.): Biodeterioration and Preservation in Art, Archaeology and Architecture. 114?129pp. Archetype Publications Limited, London.

Verberk, W. 2011 Explaining general patterns in species abundance and distributions. Nat. Edu. Knowledge 3(10): 38.

Villa, F., Stewart, P.S., Klapper, I., Jacob, J.M., Cappitelli, F. 2016 Subaerial biofilms on outdoor stone monuments: Changing the perspective toward an ecological framework. Biol. Sci. 66(4): 285?294.
DOI: 10.1093/biosci/biw006View Article Google Scholar

Wada, N., Sakamoto, T., Matsugo, S. 2013 Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Metabolites 3(2): 463?483.
DOI: 10.3390/metabo3020463View Article Google Scholar