Research Paper
Wood anatomy and ontogeny of interxylary cambium in Canavalia cathartica Thouars, C. gladiata (Jacq.) DC. and Pueraria tuberosa (Willd.) DC. (Fabaceae)
Kishore S. Rajput
Published on: 21 March 2025
Page: 230 - 242
DOI: 10.6165/tai.2025.70.230
Abstract
Fabaceae is one of the important families of flowering plants that play a crucial role in the human diet. Besides imperative sources of proteins, folk and traditional medicine, several species are sources of commercially important timbers. However, the wood anatomy of timber trees of the family has been studied extensively but information on climbing members is relatively neglected. The stem anatomy of Canavalia cathartica Thouars, and C. gladiata (Jacq.) DC. and Pueraria tuberosa (Roxb. ex Willd.) DC. was investigated histologically in the present study. In all three species, a single ring of the vascular cambium remained functional throughout the growing period and showed a regular growth pattern like most eudicots. As the plants grew (10-12 mm thick stems), thin-walled xylem parenchyma formed at the beginning of the secondary growth underwent dedifferentiation and formed isolated or group of interxylary sieve elements. Subsequently, more and more adjacent parenchyma produced sieve elements, which resulted in the formation of interxylary phloem islands of various sizes and shapes. In 20–22 mm thick stems of all three species, the non-lignified, thin-walled xylem parenchyma adjacent to these islands divided repeatedly and formed radial files of meristematic cells, referred to as interxylary cambium. These segments of the interxylary cambium had irregular orientation (radial, tangential or diagonal) and exclusively produced phloem elements. The secondary xylem was diffuse-porous with indistinct growth rings and composed of dimorphic vessels, tracheids, and axial and ray parenchyma cells. Small vessels were arranged in clusters while wide vessels were solitary with vasicentric thick-walled lignified parenchyma.
Keyword: Faboideae, interxylary cambia, interxylary phloem, Papilionoideae, perforated rays
Literature Cited
Angyalossy, V., Pace, M.R., Lima, A.C. 2015 Liana Anatomy: A Broad Perspective on Structural Evolution of the Vascular System. In: Schnitzer, S., Bongers, F., Burnham, R.J., Putz, F.E. (Eds.) Ecology of Lianas. John Wiley & Sons, West Sussex, pp 253–287
DOI: 10.1002/9781118392409.ch19View Article
Google Scholar
Baretta-Kuipers, T. 1981 Wood anatomy of Leguminosae: its relevance to taxonomy. In: Polhill, R.M., Raven, P.H. (Eds.), Advances in Legume Systematics Part 2. Royal Botanic Gardens, Kew, pp. 677–705.
Basson, P.W., Bierhorst, D.W. 1967 An analysis of differential lateral growth in the stem of Bauhinia surinamensis. Bull. Torrey Bot. Club 94(5): 404–411.
DOI: 10.2307/2483510View Article
Google Scholar
Berlyn, G.P., Miksche, J.P. 1976 Botanical Microtechnique and Cytochemistry. Ames, Iowa: The Iowa State University Press, 326 pp.
Bharti, R., Chopra, B.S., Raut, S., Khatri, N. 2020 Pueraria tuberosa: A review on traditional uses, pharmacology, and phytochemistry. Front. Pharmacol. 11: 582506.
DOI: 10.3389/fphar.2020.582506View Article
Google Scholar
Bosch, C.H. 2004 Canavalia gladiata (Jacq.) DC. [Internet] Record from PROTA4U. Grubben, G.J.H., Denton, O.A. (Eds). PROTA (Plant Resources of Tropical Africa / Ressources v?g?tales de l’Afrique tropicale), Wageningen, Netherlands. <http://www.prota4u.org/search.asp>. Accessed 3 February 2022.
Brodersen, C.R., Choat, B., Chatelet, D.S., Shackel, K.A., Matthews, M.A., McElrone A.J. 2013 Xylem vessel relays contribute to radial connectivity in grapevine stems (Vitis vinifera and V. arizonica; Vitaceae). Amer. J. Bot. 100(2): 314–321.
DOI: 10.3732/ajb.1100606View Article
Google Scholar
Caballe, G. 1993 Liana structure, function, and selection: comparative study of xylem cylinders of tropical rainforest species in Africa and America. Bot. J. Linn. Soc. 113(1): 41–60.
DOI: 10.1111/j.1095-8339.1993.tb00328.xView Article
Google Scholar
Carlquist, S. 1982 Wood anatomy of Onagraceae: further species; root anatomy; significance of vestured pits and allied structures in dicotyledons. Ann. Missouri Bot. Gard. 69(4): 755–769.
DOI: 10.2307/2398995View Article
Google Scholar
Carlquist, S. 1985 Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso 11(2): 139–157.
DOI: 10.5642/aliso.19851102.03View Article
Google Scholar
Carlquist, S. 1991 Anatomy of vine and liana stems: a review and synthesis. In: Putz F.E., Mooney H.A. (eds.), The Biology of Vines, Cambridge University Press, New York, pp. 53–71.
DOI: 10.1017/CBO9780511897658.004View Article
Google Scholar
Carlquist, S. 2001 Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood (2nd ed.), Springer, Lexington, MA.
Carlquist, S. 2013 Interxylary phloem: diversity and functions. Brittonia 65(4): 477–495.
DOI: 10.1007/s12228-012-9298-1View Article
Google Scholar
Devi, R.S., Biswal, S.K., Kumar, S. 2021 Medico-Biowealth of India Vol III. APRC Publisher, Cuttack, Odisha (India).
Ellmore, G.S., Ewers, F.W. 1985 Hydraulic conductivity in trunk xylem of elm, Ulmus americana. IAWA J. 6(4): 303–307.
DOI: 10.1163/22941932-90000958View Article
Google Scholar
Ewers, F.W., Fisher, J.B., Chiu, S.T. 1990 A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia. 84(4): 544–552.
DOI: 10.1007/BF00328172View Article
Google Scholar
Ewers, F.W., Cochard, H., Tyree, M.T. 1997 A survey of root pressure in vines of a tropical lowland forest. Oecologia 110(2): 191–196.
DOI: 10.1007/s004420050149View Article
Google Scholar
Fisher, J.B., Ewers, F.W. 1991 Structural responses to stem injury in vines. In: Putz, F.E., Mooney, H.A. (eds.), The Biology of Vines. Cambridge University Press, Cambridge, pp. 99–124.
DOI: 10.1017/CBO9780511897658.006View Article
Google Scholar
Isnard, S., Field T.S. 2015 The evolution of angiosperm lianescence: a perspective from xylem structure-function. In: Schnitzer, S., Bongers, F., Burnham, R.J., Putz, F.E. (eds.), Ecology of lianas, 1st edn. John Wiley & Sons, West Sussex, pp 221–238.
DOI: 10.1002/9781118392409.ch17View Article
Google Scholar
Johansen, D.A. 1940 Plant Microtechnique. New York: McGraw Hill. 523pp
Lens, L., Gleason, S.M., Bortolami, G., Brodersen, C., Delzon, S., Jansen, S. 2022 Tansley Review: functional xylem characteristics associated with drought-induced embolism in angiosperms. New Phytol. 236(6): 2019–2036.
DOI: 10.1111/nph.18447View Article
Google Scholar
Maji, A.K., Pandit, S., Banerji, P., Banerji, D. 2014 Pueraria tuberosa: a review on its phytochemical and therapeutic potential. Nat. Prod. Res. 28(23): 2111–2127.
DOI: 10.1080/14786419.2014.928291View Article
Google Scholar
McCulloh, K., Sperry, J.S., Lachenbruch, B., Meinzer, F.C., Reich, P.B., Voleker, S. 2010 Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytol. 186(2): 439–450.
DOI: 10.1111/j.1469-8137.2010.03181.xView Article
Google Scholar
Moya, R., Gondaliya, A.D., Rajput, K.S. 2018 Development of successive cambia and formation of flat stems in Rhynchosia pyramidalis (Lam.) Urb. (Fabaceae). Plant Biosyst. 152(5): 1031–1038.
DOI: 10.1080/11263504.2017.1407376View Article
Google Scholar
Nair, M.N.B. 1993. Structure of the stem and cambial variant in Spatholobus roxburghii (Leguminosae). IAWA J. 14(2): 191–204.
DOI: 10.1163/22941932-90001317View Article
Google Scholar
Nair, M.N.B., Mohan Ram, H.Y. 1990. Structure of the wood and cambial variant in the stem of Dalbergia paniculata Roxb. IAWA Bull. n.s. 11(4): 379–391.
DOI: 10.1163/22941932-90000526View Article
Google Scholar
Nayak, S.P., Lone, R.A., Fakhrah, S., Chauhan, A., Sarvendra, K., Mohanty, C.S. 2022 Mainstreaming underutilized legumes for providing nutritional security. In: Bhat, R. (Ed.) Future Foods: Global Trends, Opportunities, and Sustainability Challenges. Elsevier Inc. pp 151–163.
DOI: 10.1016/B978-0-323-91001-9.00023-2View Article
Google Scholar
Pace, M.R., Rodr?guez, P.A., Amorim, A.M., Angyalossy, V. 2018. Ontogeny, structure, and occurrence of interxylary cambia in Malpighiaceae. Flora 241: 46–60.
DOI: 10.1016/j.flora.2018.02.004View Article
Google Scholar
Patil, V.S., Marcati, C.R., Rajput, K.S. 2011 Development of intra- and interxylary secondary phloem in Coccinia indica (Cucurbitaceae). IAWA Journal 32(4): 475–491.
DOI: 10.1163/22941932-90000072View Article
Google Scholar
Rajput, K.S. 2003 Structure of cambium and its derivatives in the compressed stem of Canavalia ensiformis (L.) DC. Fabaceae. Phyton 43: 135–146.
Rajput, K.S., Rao, K.S., Patil, U.G. 2006 Stem anatomy of Dolichos lablab Linn (Fabaceae): Origin of cambium and reverse orientation of vascular bundles. Flora 201(1): 65–73.
DOI: 10.1016/j.flora.2005.04.004View Article
Google Scholar
Rajput, K.S., Nunes, O.M., Brandes, A.F.N., Tamaio, N. 2012 Development of successive cambia and pattern of secondary growth in the stem of the Neotropical liana Rhynchosia phaseoloides (SW.) DC. (Fabaceae). Flora 207(8): 607–614.
DOI: 10.1016/j.flora.2012.04.001View Article
Google Scholar
Rajput, K.S., Patil, V.S., Rao, K.S. 2014 Multiple cambia and secondary xylem of Ipomoea pes-caprae (L.) R. Br. (Convolvulaceae). Acta Bot. Gall. 161(1): 13–19.
DOI: 10.1080/12538078.2013.847020View Article
Google Scholar
Rajput, K.S., Gondaliya, A.D., Baijnath, H. 2021 Development of cambial variant and parenchyma proliferation in Hewittia malabarica (Convolvulaceae) from India and South Africa. IAWA J. 42(1): 50–63.
DOI: 10.1163/22941932-bja10046View Article
Google Scholar
Rajput, K.S., Kapadane, K.K., Ramoliya, D.G., Thacker, K.D., Gondaliya, A.D. 2022 Inter- and intraxylary phloem in vascular plants: A review of subtypes, occurrences, and development. Forests 13(12): 2174.
DOI: 10.3390/f13122174View Article
Google Scholar
Rajput, K.S., Moya, R. Gondaliya, A.D. 2023 Ontogeny of multiple variants in the stems of Phaseolus lunatus L. (Fabaceae). Flora 309:152407.
DOI: 10.1016/j.flora.2023.152407View Article
Google Scholar
Roskov, Y.R., Bisby, F.A., Zurucchi, J.L., Schrire, B.D., White, R.J. 2006 ILDIS World Database of Legumes: draft checklist, version 10. ILDS, Reading, UK.https://ildis.org/LegumeWeb10.01.shtml
Semba, R.D., Ramsing, R., Rahman N., Kraemer K., Bloem, M.W. 2021 Legumes as a sustainable source of protein in human diets. Glob. Food Sec. 28: 100520.
DOI: 10.1016/j.gfs.2021.100520View Article
Google Scholar
Srebotnik, E., Messener, K. 1994 A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl. & Environ. Microbiol. 60(4): 1383–1386.
DOI: 10.1128/aem.60.4.1383-1386.1994View Article
Google Scholar
Solereder, H. 1908 Systematic anatomy of the dicotyledons (trans. by Boodle, L.A., Fritsch, F.E.). Clarendon Press, Oxford. 1182 p.
Syofyan, L., Maideliza, T., Syamsuardi, Mansyurdin 2017 Wood anatomy of the Fabaceae tree species in tropical rainforest, West Sumatra, Indonesia. Asian J. Sci. Technol. 8(11): 6405–6411.
Thacker, K.D., Raole, V.M., Rajput, K.S. 2024 Comparative stem and wood anatomy of Ipomoea eriocarpa R.Br. (Convolvulaceae) growing in the arid zone and tropical deciduous forest. Flora 320: 152600.
DOI: 10.1016/j.flora.2024.152600View Article
Google Scholar
Wagner, K.A. 1946 Notes on the anomalous stem structures of a species of Bauhinia. Am. Midl. Nat. 36(1): 251–256.
DOI: 10.2307/2421627View Article
Google Scholar
Zimmermann, M.H., Jeje, A.A. 1981 Vessel-length distribution in stems of some American woody plants. Can. J. Bot. 59(10): 1882–1892.
DOI: 10.1139/b81-248View Article
Google Scholar