Special Issue
Halophila siaochihkanensis (Hydrocharitaceae), a new species from Penghu County, Taiwan
Pi-Jen Liu, Chiao-Wen Lin, Hsing-Juh Lin, Wei-Jen Lin, Li-Te Hsieh, Cheng-Xuan Cai, Ming-Yang Hong, Pei-Luen Lu
Published on: 27 March 2025
Page: 505 - 511
DOI: 10.6165/tai.2025.70.505
Abstract
Halophila siaochihkanensis P.-L. Lu & P.-J. Liu (Hydrocharitaceae) is described and illustrated as a new species from Penghu County, Taiwan. It is morphologically similar to Halophila ovalis (R. Br.) Hook. f. and Halophila decipiens Ostenf., but differs in flowering time, leaf hairs, and vegetative life history, having smaller leaves and fewer leaf veins, flowers with white to light yellowish brown tepals, shorter stamens, and fruits that are smaller, globose, and including several seeds in a fruit. This study explores the phylogenetic analysis of 11 species representing all four genera with two outgroup species using DNA Internal transcribed spacer (ITS). The dataset was analyzed using parsimony and maximum likelihood analysis. Results show that Halophila siaochihkanensis is monophyletic group. The species is morphologically and phylogenetically distinct from the remaining seagrass species in Taiwan and is recognized as a new species, Halophila siaochihkanensis P.-L. Lu & P.-J. Liu, and a new key for seagrass of Taiwan is made.
Keyword: Hydrocharitaceae, Halophila decipiens, Halophila ovalis, phylogenetics, taxonomy
Literature Cited
Akaike, H. 1974 A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6): 716–723.
DOI: 10.1109/TAC.1974.1100705View Article
Google Scholar
Angiosperm Phylogeny Group 2009 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2): 105–121.
DOI: 10.1111/j.1095-8339.2009.00996.xView Article
Google Scholar
Bogler, D.J., Simpson, B.B. 1996 Phylogeny of Agavaceae based on ITS rDNA sequence variation. Am. J. Bot. 83(9): 1225–1235.
DOI: 10.2307/2446206View Article
Google Scholar
ColPlantA 2025 Useful Plants of Colombia. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; https://colplanta.org/Retrieved 12 February 2025."
Den Hartog, C. 1970 The Sea-Grasses of the World. Verh. Kon. Ned. Akad. Wetensch. Afd. Natururk. Sect. 2, 59, 1–275.
Den Hartog, C., Kuo, J. 2006 Taxonomy and biogeography. In Larkum, A.W.D., Orth, R.J., Duarte, C.M. (eds.) Seagrasses: Biology, Ecology and Conservation. Springer: Dordrecht, The Netherland, pp. 1–23.
DOI: 10.1007/1-4020-2983-7_1View Article
Google Scholar
Doyle, J.J., Doyle, J.L. 1987 A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem. Bull. 19:11–15.
Edgar, Robert C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 32(5): 1792–1797
DOI: 10.1093/nar/gkh340View Article
Google Scholar
Hemminga, M.A., Duarte, C.M. 2008 Seagrass Ecology. Cambridge University Press.
DOI: 10.1017/CBO9780511525551View Article
Huang, T.C. (eds.) 2003 Flora of Taiwan 2nd edtion. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei.
Kelchner, S.A. 2000 The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann. Missouri Bot. 87(4): 482–498.
DOI: 10.2307/2666142View Article
Google Scholar
Ke, C.-J. 2004 A Study on the Taxonomy and Distribution of Seagrasses in Taiwan. Master's thesis, Institute of Biological Sciences, National Sun Yat-sen University.
Kuo, J. 2020 Taxonomy of the genus Halophila Thouars (Hydocharitaceae): A review. Plants 9(12): 1732.
DOI: 10.3390/plants9121732View Article
Google Scholar
Liu, S.Y.V., Hsu, C.H. 2021 Genetic analyses reveal fine-scale genetic structure between lagoon and open water spoon seagrass (Halophila ovalis) populations around Dongsha Island. Aquat. Bot. 174: 103421.
DOI: 10.1016/j.aquabot.2021.103421View Article
Google Scholar
Morden, C.W., Caraway, V., Motley, T.J. 1996 Development of a DNAlibrary for native Hawaiian plants. Pac. Sci. 50: 32–335.
Nei, M., Kumar, S. 2000 Molecular Evolution and Phylogenetics. Oxford University Press, New York.
DOI: 10.1093/oso/9780195135848.001.0001View Article
Stamatakis, A. 2014 RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313.
DOI: 10.1093/bioinformatics/btu033View Article
Google Scholar
Tamura, K., Stecher G., Kumar, S. 2021 MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol. Evol. 38(7): 3022–3027.
DOI: 10.1093/molbev/msab120View Article
Google Scholar
Tuya, F., Mart?nez-P?rez J., Fueyo, ?., Bosch, N.E. 2024 Strong phylogenetic signal and models of trait evolution evidence phylogenetic niche conservatism for seagrasses. J Ecol. 112(3): 446–460.
DOI: 10.1111/1365-2745.14232View Article
Google Scholar
Unsworth, R.K.F., Cullen-Unsworth, L.C., Jones, B.L.H., Lilley, R.J. 2002 The planetary role of seagrass conservation. Science 377(6606): 609–613
DOI: 10.1126/science.abq6923View Article
Google Scholar
Waycott, M., Procaccini, G., Les, D. H., Reusch, T. 2007 Seagrass evolution, ecology and conservation: A genetic perspective. In: Larkum, Anthony W.D., Orth, Robert J., and Duarte, Carlos M., (eds.) Seagrasses: biology, ecology and conservation. Springer. 25–50pp.
DOI: 10.1007/1-4020-2983-7_2View Article
Google Scholar
WFO 2024 World Flora Online. Published on the Internet;http://www.worldfloraonline.org. Accessed on: 30 Nov 2024
Yang, Y.-P., Fong, S.-C., Liu, H.-Y. 2002 Taxonomy and Distribution of Seagrasses in Taiwan. Taiwania 47(1): 54–61.
DOI: 10.6165/tai.2002.47(1).54View Article
Google Scholar