Note

Development and characterization of EST-SSR markers in creeping mazus (Mazus miquelii), and cross-amplification in five related species

Masaya Yamamoto, Daiki Takahashi, Chih-Chieh Yu, Hiroaki Setoguchi

Published on: 18 April 2020

Page: 249 - 252

DOI: 10.6165/tai.2020.65.249

Abstract

Simple sequence repeat (SSR) markers were developed from expressed sequence tags (ESTs) for Mazus miquelii (Mazaceae), one of the most widespread species of the genus found in mainland China to Japan and North America, with the goal of elucidating the hidden genetic diversity and pollination ecology of the species. Of the initial 48 EST-SSR markers designed based on transcriptome data, 36 loci were successfully amplified, 16 of which were polymorphic. Polymorphisms for these markers were tested on 72 individuals from three populations in Japan. Two to eleven alleles per locus were detected, and the levels of observed and expected heterozygosity ranged from 0.181 to 0.708 and 0.154 to 0.715, respectively. Most loci were amplified successfully in five related Japanese and Taiwanese species. These markers will empower ecological and evolutionary studies in the creeping mazus and facilitate the disentanglement of phylogenetic relationships with related species.

Keyword: microsatellite, genetic diversity, expressed sequence tag, Mazus, Mazaceae

Literature Cited

Bolger, A.M., M. Lohse and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinform. 30(15): 2114–2120.
DOI: 10.1093/bioinformatics/btu170View Article Google Scholar

Bouck, A. and T. Vision. 2007. The molecular ecologist's guide to expressed sequence tags. Mol. Ecol. 16(5): 907–924.
DOI: 10.1111/j.1365-294X.2006.03195.xView Article Google Scholar

Deng, T., N. Lin, X. Huang, H. Wang, C. Kim, D. Zhang, W. Zhu, Z. Yusupov, K.S. Tojibaev and H. Sun. 2019. Phylogenetic of Mazaceae (Lamiles), with special reference to intrageneric relationships within Mazus. Taxon 68(5): 1037–1047.

Doyle, J. and J.L. Doyle. 1987. Genomic plant DNA preparation from fresh tissue?CTAB method. Phytochem. Bull. 19: 11–15.

Du, L., C. Zhang, Q. Liu, X. Zhang and B. Yue. 2017. Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinform. 34(4): 681–683.
DOI: 10.1093/bioinformatics/btx665View Article Google Scholar

Ellis, J.R. and J.M. Burke. 2007. EST?SSRs as a resource for population genetic analyses. Heredity 99(2): 125–132.
DOI: 10.1038/sj.hdy.6801001View Article Google Scholar

Gupta, P.K., S. Rustgi, S. Sharma, R. Singh, N. Kumar and H.S. Balyan. 2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics. 270(4): 315–323.
DOI: 10.1007/s00438-003-0921-4View Article Google Scholar

Haas, B.J., A. Papanicolaou and M. Yassour, M. Grabherr, P.D. Blood, J. Bowden, M.B. Couger, D. Eccles, B. Li, M. Lieber, M.D. MacManes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C.N. Dewey, R. Henschel, R.D. LeDuc, N. Friedman, A. Regev. 2013. De novo transcript sequence reconstruction from RNA?seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8(8): 1494–1512.
DOI: 10.1038/nprot.2013.084View Article Google Scholar

Hong, D.Y., H. Yang, C.L. Jin and N.H. Holmgren. 1998. Scrophulariaceae. In: Wu, Z.Y. and P.H. Raven (eds.), Flora of China, vol. 18: 1–212. Science Press, Beiling.

Hsieh, T.H. 2000. Revision of Mazus Lour. (Scrophulariaceae) in Taiwan. Taiwania 45(2): 131–146.
DOI: 10.6165/tai.2000.45(2).131View Article Google Scholar

Jin, X.F., Z.M. Ye, Q.F. Wang and C.F. Yang. 2015. Relationship of stigma behaviors and breeding system in three Mazus (Phrymaceae) species with bilobed stigma. J. Syst. Evol. 53(3): 259–265.
DOI: 10.1111/jse.12137View Article Google Scholar

Jin, X.F., Z.M. Ye, G.M. Amboka, Q.F. Wang and C.F. Yang. 2017. Stigma Sensitivity and the Duration of Temporary Closure Are Affected by Pollinator Identity in Mazus miquelii (Phrymaceae), a Species with Bilobed Stigma. Front. Plant Sci. 8: 783.
DOI: 10.3389/fpls.2017.00783View Article Google Scholar

Kimata, M. 1978. Comparative studies on reproductive systems of Mazus japonicus and M. miquelii (Scrophulariaceae). Plant Syst. Evol. 129(4): 243–253.
DOI: 10.1007/BF00982750View Article Google Scholar

Meirmans, P.G. and P.H. van Tienderen. 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4(4): 792–794.
DOI: 10.1111/j.1471-8286.2004.00770.xView Article Google Scholar

Newcombe, F.C. 1924. Significance of the behavior of sensitive stigmas II. Am. J. Bot. 11(2): 85–93.
DOI: 10.1002/j.1537-2197.1924.tb05763.xView Article Google Scholar

Raymond, M. and F. Rousset. 1995. GENEPOP (Version1.2): population genetics software for exact tests and ecumenicism. Heredity 86(3): 248–249.
DOI: 10.1093/oxfordjournals.jhered.a111573View Article Google Scholar

Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm and S.G. Rozen. 2012. Primer3 - new capabilities and interfaces. Nucleic. Acids Res. 40: e115.
DOI: 10.1093/nar/gks596View Article Google Scholar

van Oosterhout, C., W.F. Hutchinson, D.P. Wills and P. Shipley. 2004. MICRO?CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3): 535–538.
DOI: 10.1111/j.1471-8286.2004.00684.xView Article Google Scholar