Research Paper

Chromosomal traits of Chamaelirium luteum (Melanthiaceae) with particular focus on the large heterochromatic centromeres

Noriyuki Tanaka

Published on: 05 June 2020

DOI: 10.6165/tai.2020.65.286

PDF Download pdf

2020 vol.65 no.3 pp.286-294



Ajima, T. 1976. A new variety of Chionographis japonica Maxim. J. Geobot. 24: 45–48.

Behr, W., K. Honikel and G. Hartmann. 1969. Interaction of the RNA polymerase inhibitor Chromomycin with DNA. Eur. J. Biochem. 9(1): 82–92.
DOI: 10.1111/j.1432-1033.1969.tb00579.xView ArticleGoogle Scholar

Comings, D.E. 1975. Mechanisms of chromosome banding VIII. Hoechst 33258-DNA interaction. Chromosoma 52(3): 229–243.
DOI: 10.1007/BF00332113View ArticleGoogle Scholar

Comings, D.E. and M.E. Drets. 1976. Mechanisms of chromosome banding IX. Are variations in DNA base composition adequate to account for quinacrine, Hoechst 33258 and daunomycin banding? Chromosoma 56(3): 199–211.
DOI: 10.1007/BF00293185View ArticleGoogle Scholar

Cuacos, M., F.C. Franklin and S. Heckmann. 2015. Atypical centromeres in plants - what they can tell us. Front. Plant Sci. 6: 913.
DOI: 10.3389/fpls.2015.00913View ArticleGoogle Scholar

Demidov, D., V. Schubert, K. Kumke, O. Weiss, R. Karimi-Ashtiyani, J. Buttlar, S. Heckmann, G. Wanner, Q. Dong, F. Han and A. Houben. 2014. Anti-phosphorylated histon H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet. Genome Res. 143(1-3): 150–156.
DOI: 10.1159/000360018View ArticleGoogle Scholar

Fang, Y. and D. Spector. 2005. Centromere positioning and dynamics in living Arabidopsis plants. Mol. Biol. Cell 16(12): 5710–5718.
DOI: 10.1091/mbc.e05-08-0706View ArticleGoogle Scholar

Gray, A. 1837. Melanthacearum Americae septentrionalis revisio. Annals of the Lyceum Natural History of New York 4(1): 105–140.

Guerra, M. 2000. Patterns of heterochromatin distribution in plant chromosomes. Genet. Mol. Biol. 23(4): 1029–1041.
DOI: 10.1590/S1415-47572000000400049View ArticleGoogle Scholar

Hara, H. and K. Kurosawa. 1962. Morphological and chromosomal variations in Chionographis japonica Maxim. Acta Phytotax. Geobot. 20: 34–38 (in Japanese).

Hizume, M., K. Tominaga and A. Tanaka. 1988a. Fluorescent chromosome banding in Larix leptolepis (Pinaceae). Bot. Mag. Tokyo 101(3): 333–336.
DOI: 10.1007/BF02488608View ArticleGoogle Scholar

Hizume, M., K.K. Abe and A. Tanaka. 1988b. Fluorescent chromosome bandings in the Taxodiaceae. La Kromosomo II–50: 1609–1619.

Houben, A. and I. Schubert. 2003. DNA and proteins of plant centromeres. Curr. Opin. Plant Biol. 6(6): 554–560.
DOI: 10.1016/j.pbi.2003.09.007View ArticleGoogle Scholar

Kawano, S. 1976. Nihon no flora [Flora of Japan] 9. Shokubutsu to Shizen (The Nature and Plants) 10(12): 6–11 (in Japanese).

Levan, A., K. Fredga and A.A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52(2): 201–220.
DOI: 10.1111/j.1601-5223.1964.tb01953.xView ArticleGoogle Scholar

Lin, M.S., D.E. Comings and O.S. Alfi. 1977. Optical studies of the interaction of 4’-6-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma 60(1): 15–25.
DOI: 10.1007/BF00330407View ArticleGoogle Scholar

Maki, M. 1993. Floral sex ratio variation in hermaphrodites of gynodioecious Chionographis japonica var. kurohimensis Ajima et Satomi (Liliaceae). J. Pl. Res. 106(2): 181–186.
DOI: 10.1007/BF02344421View ArticleGoogle Scholar

Meagher, T. R. 1980. Population biology of Chamaelirium luteum, a dioecious lily. I. Spatial distribution of males and females. Evolution 34(6): 1127–1137.
DOI: 10.2307/2408293View ArticleGoogle Scholar

Mezzanotte, R., A. Marchi and L. Ferrucci. 1979. The different banding pattern produced by Hoechst 33258 and quinacrine dihydrochloride in metaphase chromosomes of Culiseta longiareolata (Diptera: Culicidae). Caryologia 32(3): 373–377.
DOI: 10.1080/00087114.1979.10796801View ArticleGoogle Scholar

Nagaki, K., K. Kashihara and M. Murata. 2005. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17(7): 1886–1893.
DOI: 10.1105/tpc.105.032961View ArticleGoogle Scholar

Nagaki, K. 2009. Components and structures of plant centromeres. Chromosome Sci. 12: 5–11.

Okada, H. 1991. Correspondence of Giemsa C-band with DAPI/CMA fluorochrome staining pattern in Aconitum sanyoense (Ranunculaceae). Cytologia 56(1): 135–141.
DOI: 10.1508/cytologia.56.135View ArticleGoogle Scholar

Pellicer, J., L.J. Kelly, I.J. Leitch, W.B. Zomlefer and M.F. Fay. 2014. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol. 201(4): 1484–1497.
DOI: 10.1111/nph.12617View ArticleGoogle Scholar

Plohl, M., N. Me?trovi? and B. Mravinac. 2014. Centromere identity from the DNA point of view. Chromosoma 123(4): 313–325.
DOI: 10.1007/s00412-014-0462-0View ArticleGoogle Scholar

Sato, D. 1942. Karyotype alteration and phylogeny in Liliaceae and allied families. J. Jpn. Bot. 12: 57–161.

Schlammadinger, J., H. Poulsen and M. Mikkelsen. 1977. Inhibition of the development of Q-bands on human chromosomes by Netropsin. Hum. Genet. 39(3): 309–313.
DOI: 10.1007/BF00295425View ArticleGoogle Scholar

Schmid, M. 1980. Chromosome banding in Amphibia IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Chromosoma 77(1): 83–103.
DOI: 10.1007/BF00292043View ArticleGoogle Scholar

Schnedl, W., O. Dann and D. Schweizer. 1980. Effects of counterstaining with DNA binding drugs on flouorescent banding patterns of human and mammalian chromosomes. Eur. J. Cell Biol. 20: 290–296.

Schweizer, D. 1976. Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58(4): 307–324.
DOI: 10.1007/BF00292840View ArticleGoogle Scholar

Schweizer, D. 1981. Counterstain-enhanced chromosome banding. Hum. Genet. 57(1): 1–14.
DOI: 10.1007/BF00271159View ArticleGoogle Scholar

Schweizer, D. and W. Nagl. 1981. Heterochromatin diversity in Cymbidium, and its relationship to differential DNA replication. Exp. Cell Res. 98(2): 411–423.
DOI: 10.1016/0014-4827(76)90450-XView ArticleGoogle Scholar

Tanaka, N. 1981a. Studies on chromosome arrangement in some higher plants I. Interphase chromosomes in three liliaceous plants. Cytologia 46(1/2): 343–357.
DOI: 10.1508/cytologia.46.343View ArticleGoogle Scholar

Tanaka, N. 1981b. Studies on chromosome arrangement in some higher plants II. The determining factor of the distribution of centromeric regions in the nucleus. Cytologia 46(3): 531–544.
DOI: 10.1508/cytologia.46.531View ArticleGoogle Scholar

Tanaka, N. 1981c. Studies on chromosome arrangement in some higher plants III. Haplopappus gracilis (2n=4) and Crepis capillaris (2n=6). Cytologia 46(3): 545–559.
DOI: 10.1508/cytologia.46.545View ArticleGoogle Scholar

Tanaka, N. 1985. Shiraitos? zoku no seiteki-hen’i [Sexual variation in Chionographis]. Shuseibutsugaku-kenky? [Species Biology] 9: 11–19 (in Japanese).

Tanaka, N. 2003. New status and combinations for Japanese taxa of Chionographis (Melanthiaceae). Novon 13(2): 212–215.
DOI: 10.2307/3393523View ArticleGoogle Scholar

Tanaka, N. 2016. The occurrence of gynodioecy in a Chinese species of Chionographis (Melanthiaceae). J. Jpn. Bot. 91: 122–128.

Tanaka, N. 2017. A synopsis of the genus Chamaelirium (Melanthiaceae) with a new infrageneric classification including Chionographis. Taiwania 62(2): 157–167.
DOI: 10.6165/tai.2017.62.157View ArticleGoogle Scholar

Tanaka, N. 2020a. High stability in chromosomal traits of Chamaelirium japonicum and C. koidzumianum (Melanthiaceae) with holocentric chromosomes. Cytologia 85(1): 33–40.
DOI: 10.1508/cytologia.85.33View ArticleGoogle Scholar

Tanaka, N. 2020b. Chromosomal variation in populations of Chamaelirium hisauchianum (Melanthiaceae) with holocentric chromosomes. Cytologia 85(2): 000–000 (accepted).

Tanaka, N. and N. Tanaka. 1977a. Chromosome studies in Chionographis (Liliaceae) I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. Cytologia 42(3-4): 753–763.
DOI: 10.1508/cytologia.42.753View ArticleGoogle Scholar

Tanaka, N. and N. Tanaka. 1977b. Behavior of the differentially stained kinetochores during the mitotic cycle in some Polygonatum species (Liliaceae). Cytologia 42(3-4): 765–775.
DOI: 10.1508/cytologia.42.765View ArticleGoogle Scholar

Tanaka, N. and N. Tanaka. 1979. Chromosome studies in Chionographis (Liliaceae) II. Morphological characteristics of the somatic chromosomes of four Japanese members. Cytologia 44(4): 935–949.
DOI: 10.1508/cytologia.44.935View ArticleGoogle Scholar

Tanaka, N. and N. Tanaka. 1980. Chromosome studies in Chionographis (Liliaceae) III. The mode of meiosis. Cytologia 45(4): 809–817.
DOI: 10.1508/cytologia.45.809View ArticleGoogle Scholar

Tanaka, N. and N. Tanaka. 1985. Fluorescent banding in the chromosomes of Chionographis and Chamaelirium. In: Abstracts of presentations at the 35th annual meeting of the Society of Chromosome Research in Japan held in 1984. La Kromosomo II-37: 1161 (in Japanese).

Utech, F.H. 2002. Chamaelirium. In: Flora of North America Editorial Committee (ed.), Flora of North America North of Mexico 26: 68–69 (fig. on p. 65). Oxford University Press, New York.

Vosa, C.G. 1970. Heterochromatin recognition with fluorochromes. Chromosoma 30(3): 366–372.
DOI: 10.1007/BF00321068View ArticleGoogle Scholar

Vosa, C.G. 1971. The Quinacrine-fluorescence patterns of the chromosomes of Allium carinatum. Chromosoma 33(4): 382–385.
DOI: 10.1007/BF00326500View ArticleGoogle Scholar

Vosa, C.G. 1973. Heterochromatin recognition and analysis of chromosome variation in Scilla sibirica. Chromosoma 43(3): 269–278.
DOI: 10.1007/BF00294275View ArticleGoogle Scholar

Weisblum, B. 1973. Why centric regions of quinacrine-treated mouse chromosomes show diminished fluorescence. Nature 246(5249): 150–151.
DOI: 10.1038/246150a0View ArticleGoogle Scholar

Weisblum, B. and P.L. de Haseth. 1973. Nucleotide specificity of the quinacrine staining reaction for chromosomes. Chromosomes Today 4: 35–51.

Weisblum, B. and E. Haenssler. 1974. Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent prove specific for AT concentration in chromosomal DNA. Chromosoma 46(3): 255–260.
DOI: 10.1007/BF00284881View ArticleGoogle Scholar