Research Paper

Vagal control of the heart in the turtle, Ocadia sinensis

Ruei-Feng Chen, Pai-Feng Yang, Chiung-Hsiang Cheng, Jui-Hsiang Hsieh, Chen-Tung Yen

Published on: 11 October 2018

Page: 333 - 344

DOI: 10.6165/tai.2018.63.333

Abstract

The purpose of the present study was to identify the cardiac vagal nerve (CVN) of the turtle, to characterize its fiber composition, and to correlate this composition with cardioinhibitory functions. Turtles (Ocadia sinensis) were anesthetized with sodium pentobarbital. The CVN was identified anatomically as a thoracic vagal branch going to the heart. Transection or reversal block of this branch completely abolished the negative chronotropic and inotropic effects produced by ipsilateral cervical vagal stimulation. Electron microscopic examination of the CVN revealed that it is comprised of 500 to 1800 axon fibers. Among these, 86% were unmyelinated and 14% were myelinated fibers. Compound action potentials of the CVN consisted of A, B, and C groups. A decrease in the heart rate or a reduction of ventricular contractility was observed with electrical stimulation of the cervical vagus at an intensity which activates the B-fiber group. When the stimulus intensity increased to recruit both the B- and C-fiber groups, maximal cardioinhibitory effects were observed. The negative chronotropic effect of the right vagus was greater than that of the left vagus with low-frequency stimulation. In contrast, stimulation of the left vagus produced greater negative inotropic effect. These data indicate that the turtle heart is innervated by a single pair of CVN. The cardioinhibitory functions are subserved by small myelinated and large unmyelinated fibers. Functionally distinct vagal neurons may be distributed unevenly in the turtle brain, such that the right vagal nerve contains more chronotropic while the left more inotropic motor fibers.

Keyword: Chronotropism, Compound action potential, Inotropism, Nerve fiber composition, Ocadia sinensis, Turtles

Literature Cited

Agostoni, E., J.E. Chinnock, M.B. DeDaly and J.G. Murray. 1957. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. 135(1): 182-205.
DOI: 10.1113/jphysiol.1957.sp005703View Article Google Scholar

Ardell, J.L. and W.C. Randall. 1986. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am. J. Physiol. 251(4): H764-773.
DOI: 10.1152/ajpheart.1986.251.4.H764View Article Google Scholar

Armour, J.A., W.C. Randall and S. Sinha. 1975. Localized myocardial responses to stimulation of small cardiac branches of the vagus. Am. J. Physiol. 228(1): 141-148.
DOI: 10.1152/ajplegacy.1975.228.1.141View Article Google Scholar

Berkson, H. 1966. Physiological adjustments to prolonged diving in the pacific green turtle (Chelonia mydas agassizii). Comp. Biochem. Physiol. 18(1): 101-119.
DOI: 10.1016/0010-406X(66)90335-5View Article Google Scholar

Billman, G.E., R.S. Hoskins, D.C. Randall, W.C. Randall, R.L. Hamlin and Y.C. Lin. 1989. Selective vagal postganglionic innervation of the sinoatrial and atrioventricular nodes in the non-human primate. J. Auton. Nerv. Syst. 26(1): 27-36.
DOI: 10.1016/0165-1838(89)90104-5View Article Google Scholar

Bluemel, K.M., R.D. Wurster, W.C. Randall, M.J. Duff and M.F. O'Toole. 1990. Parasympathetic postganglionic pathways to the sinoatrial node. Am. J. Physiol. 259(5): H1504-1510.
DOI: 10.1152/ajpheart.1990.259.5.H1504View Article Google Scholar

Burkholder, T., M. Chambers, K. Hotmire, R.D. Wurster, S. Moody and W.C. Randall. 1992. Gross and microscopic anatomy of the vagal innervation of the rat heart. Anat. Rec. 232(3): 444-452.
DOI: 10.1002/ar.1092320313View Article Google Scholar

Carlson, M.D., A.S. Geha, J. Hsu, P.J. Martin, M.N. Levy, G. Jacobs and A. L. Waldo. 1992. Selective stimulation of parasympathetic nerve fibers to the human sinoatrial node. Circulation 85(4): 1311-1317.
DOI: 10.1161/01.CIR.85.4.1311View Article Google Scholar

Chih, C.P., Z.C. Feng, M. Rosenthal, P.L. Lutz and T.J. Sick. 1989. Energy metabolism, ion homeostasis, and evoked potentials in anoxic turtle brain. Am. J. Physiol. 257(4): R854-860.
DOI: 10.1152/ajpregu.1989.257.4.R854View Article Google Scholar

Cohn, A.E. and T. Lewis. 1913. The predominant influence of the left vagus nerve upon conduction between the auricles and ventricles in the dog J. Exp. Med. 18(6): 739-747.
DOI: 10.1084/jem.18.6.739View Article Google Scholar

Coote, J.H. 2013. Myths and realities of the cardiac vagus. J. Physiol. 591(17): 4073-4085.
DOI: 10.1113/jphysiol.2013.257758View Article Google Scholar

Evans, D.H. and J.G. Murray. 1954. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. 88: 330-337.

Furukawa, Y., D.W. Wallick, M.D. Carlson and P.J. Martin. 1990. Cardiac electrical responses to vagal stimulation of fibers to discrete cardiac regions. Am. J. Physiol. 258(4): H1112-1118.
DOI: 10.1152/ajpheart.1990.258.4.H1112View Article Google Scholar

Gatti, P.J., T.A. Johnson, P. Phan, I.K. Jordan, 3rd, W. Coleman and V.J. Massari. 1995. The physiological and anatomical demonstration of functionally selective parasympathetic ganglia located in discrete fat pads on the feline myocardium. J. Auton. Nerv. Syst. 51(3): 255-259.
DOI: 10.1016/0165-1838(94)00139-BView Article Google Scholar

Gatti, P.J., T.A. Johnson, J. McKenzie, J.M. Lauenstein, A. Gray and V.J. Massari. 1997. Vagal control of left ventricular contractility is selectively mediated by a cranioventricular intracardiac ganglion in the cat. J. Auton. Nerv. Syst. 66(3): 138-144.
DOI: 10.1016/S0165-1838(97)00071-4View Article Google Scholar

Geis, G.S. and R.D. Wurster. 1980. Cardiac responses during stimulation of the dorsal motor nucleus and nucleus ambiguus in the cat. Circ. Res. 46(5): 606-611.
DOI: 10.1161/01.RES.46.5.606View Article Google Scholar

Hamlin, R.L. and C.R. Smith. 1968. Effects of vagal stimulation on s-a and a-v nodes. Am. J. Physiol. -Legacy Content 215(3): 560-568.
DOI: 10.1152/ajplegacy.1968.215.3.560View Article Google Scholar

Heinbecker, P. and J. O'Leary. 1933. The mammalian vagus nerve-a functional and histological study. Am. J. Physiol. -Legacy Content 106(3): 623-646.
DOI: 10.1152/ajplegacy.1933.106.3.623View Article Google Scholar

Heinbecker, P. and G.H. Bishop. 1935. Studies on the extrinsic and intrinsic nerve mechanisms of the heart. Am. J. Physiol. -Legacy Content 114(1): 212-223.
DOI: 10.1152/ajplegacy.1935.114.1.212View Article Google Scholar

Hicks, J.W. 1994. Adrenergic and cholinergic regulation of intracardiac shunting. Physiol. Zool. 67(6): 1325-1346.
DOI: 10.1086/physzool.67.6.30163900View Article Google Scholar

Hicks, J.W. and G.M. Malvin. 1992. Mechanism of intracardiac shunting in the turtle Pseudernys scripta. Am. J. Physiol. 262(6): R986-92.
DOI: 10.1152/ajpregu.1992.262.6.R986View Article Google Scholar

Hondeghem, L.M., E. Mouton, T. Stassen and H. De Geest. 1975. Additive effects of acetylcholine released by vagal nerve stimulation on atrial rate. J. Appl. Physiol. 38(1): 108-113.
DOI: 10.1152/jappl.1975.38.1.108View Article Google Scholar

Hsieh, J.H., C.M. Pan, J.S. Kuo and C.Y. Chai. 1988. Predominance of vagal bradycardia mechanism in the brain stem of turtles. J. Exp. Biol. 140: 405-420.

James O. Foley, F. S. D. 1937. Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. J. Comp. Neurol. 67(1): 49-67.
DOI: 10.1002/cne.900670104View Article Google Scholar

Jones, J.F., Y. Wang and D. Jordan. 1995. Heart rate responses to selective stimulation of cardiac vagal c fibres in anaesthetized cats, rats and rabbits. J. Physiol. 489(1): 203-214.
DOI: 10.1113/jphysiol.1995.sp021042View Article Google Scholar

Lazzara, R., B.J. Scherlag, M.J. Robinson and P. Samet. 1973. Selective in situ parasympathetic control of the canine sinoatrial and atrioventricular nodes. Circ. Res. 32(3): 393-401.
DOI: 10.1161/01.RES.32.3.393View Article Google Scholar

Lutz, P.L., M. Rosenthal and T.J. Sick. 1985. Living without oxygen: Turtle brain as a model of anaerobic metabolism. Mol. Physiol. 8: 411-425.

Middleton, S., H.H. Middleton and H. Grundfest. 1950. Spike potentials and cardiac effects of mammalian vagus nerve. Am. J. Physiol.-Legacy Content 162(3): 545-552.
DOI: 10.1152/ajplegacy.1950.162.3.545View Article Google Scholar

Murray, J.G. 1957. Innervation of the intrinsic muscles of the cat's larynx by the recurrent laryngeal nerve: A unimodal nerve. J. Physiol. 135(1): 206-212.
DOI: 10.1113/jphysiol.1957.sp005704View Article Google Scholar

Nonidez, J. 1939. Studies on the innervation of the heart. Am. J. Anat. 65(3): 361-401.
DOI: 10.1002/aja.1000650302View Article Google Scholar

Nosaka, S., K. Yasunaga and M. Kawano. 1979. Vagus cardioinhibitory fibers in rats. Pflugers Arch 379: 281-285.
DOI: 10.1007/BF00581432View Article Google Scholar

O'Toole, M.F., J.L. Ardell and W.C. Randall. 1986. Functional interdependence of discrete vagal projections to sa and av nodes. Am. J. Physiol. 251(2): H398-404.
DOI: 10.1152/ajpheart.1986.251.2.H398View Article Google Scholar

Phillips, J.G., W.C. Randall and J.A. Armour. 1986. Functional anatomy of the major cardiac nerves in cats. Anat. Rec. 214(4): 365-371.
DOI: 10.1002/ar.1092140405View Article Google Scholar

Randall, W.C. and J.L. Ardell. 1985. Selective parasympathectomy of automatic and conductile tissues of the canine heart. Am. J. Physiol. 248: H61-68.
DOI: 10.1152/ajpheart.1985.248.1.H61View Article Google Scholar

Randall, W.C., J.L. Ardell, D. Calderwood, M. Milosavljevic and S.C. Goyal. 1986. Parasympathetic ganglia innervating the canine atrioventricular nodal region. J. Auton. Nerv. Syst. 16(4): 311-323.
DOI: 10.1016/0165-1838(86)90036-6View Article Google Scholar

Randall, W.C., J.L. Ardell, R.D. Wurster and M. Milosavljevic. 1987. Vagal postganglionic innervation of the canine sinoatrial node. J. Auton. Nerv. Syst. 20(1): 13-23.
DOI: 10.1016/0165-1838(87)90077-4View Article Google Scholar

Randall, W.C. 1994. Efferent sympathetic innervation of the heart. In: Armour, J. A., and Ardell, JL (ed.), Neurocardiology, 77-94. New York: Oxford Univ. Press. pp. 77-94.

Robin, E.D., J.W. Vester, H.V. Murdaugh, Jr. and J.E. Millen. 1964. Prolonged anaerobiosis in a vertebrate: Anaerobic metabolism in the freshwater turtle. J. Cell. Physiol. 63(3): 287-297.
DOI: 10.1002/jcp.1030630304View Article Google Scholar

Schwaber, J.S. and D.H. Cohen. 1978. Electrophysiological and electron microscopic analysis of the vagus nerve of the pigeon, with particular reference to the cardiac innervation. Brain Res. 147(1): 65-78.
DOI: 10.1016/0006-8993(78)90772-2View Article Google Scholar

Sewall, H. and F. Donaldson. 1882. On the influence of variations of intra?cardiac pressure upon the inhibitory action of the vagus nerve. J. physiol. 3(3-5): 357-368.
DOI: 10.1113/jphysiol.1882.sp000109View Article Google Scholar

Shelton, G. and W. Burggren. 1976. Cardiovascular dynamics of the chelonia during apnoea and lung ventilation. J. Exp. Biol. 64: 323-343.

Sick, T.J., M. Rosenthal, J.C. LaManna and P.L. Lutz. 1982. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am. J. Physiol. 243: R281-288.
DOI: 10.1152/ajpregu.1982.243.3.R281View Article Google Scholar

Stecyk, J., J. Overgaard, A. Farrell and T. Wang. 2004. Α-adrenergic regulation of systemic peripheral resistance and blood flow distribution in the turtle trachemys scripta during anoxic submergence at 5 c and 21 c. J. Exp. Biol. 207(2): 269-283.
DOI: 10.1242/jeb.00744View Article Google Scholar

Taylor, E., D.V. Andrade, A.S. Abe, C.A. Leite and T. Wang. 2009. The unequal influences of the left and right vagi on the control of the heart and pulmonary artery in the rattlesnake, crotalus durissus. J. Exp. Biol. 212(1): 145-151.
DOI: 10.1242/jeb.024042View Article Google Scholar

Taylor, E.W., C. A. Leite, M.R. Sartori, T. Wang, A.S. Abe and D. A. Crossley. 2014. The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. J. Exp. Biol. 217(5): 690-703.
DOI: 10.1242/jeb.086199View Article Google Scholar

Thompson, M.E., G. Felsten, J. Yavorsky and B.H. Natelson. 1987. Differential effect of stimulation of nucleus ambiguus on atrial and ventricular rates. Am. J. Physiol. 253(1): R150-157.
DOI: 10.1152/ajpregu.1987.253.1.R150View Article Google Scholar

Ultsch, G.R. and D.C. Jackson. 1982. Long-term submergence at 3{degrees}c of the turtle, chrysemys picta bellii, in normoxic and severely hypoxic water: I. Survival, gas exchange and acid-base status. J. Exp. Biol. 96: 11-28.

Wang, T. and J.W. Hicks. 1996. Cardiorespiratory synchrony in turtles. J. Exp. Biol. 199: 1791-1800.

Wang, T. 2012. Evolution of the cardiovascular autonomic nervous system in vertebrates. Primer on the autonomic nervous system (third edition), 669-673. Elsevier. pp. 669-673.
DOI: 10.1016/B978-0-12-386525-0.00141-4View Article Google Scholar

Wiggers, C.J. 1916. The physiology of the mammalian auricle: Ii. The influence of the vagus nerves on the fractionate contraction of the right auricle. Am. J. Physiol. 42: 133-140.
DOI: 10.1152/ajplegacy.1916.42.1.133View Article Google Scholar

Woolley, D.C., P.N. McWilliam, T.W. Ford and R.W. Clarke. 1987. The effect of selective electrical stimulation of non-myelinated vagal fibres on heart rate in the rabbit. J. Auton. Nerv. Syst. 21(2-3): 215-221.
DOI: 10.1016/0165-1838(87)90024-5View Article Google Scholar