Research Paper

Tissue-specific bioaccumulation of heavy metals in Ammopiptanthus mongolicus, the only evergreen shrub in the desert of Northwest China

Yong-Zhi Yang, Run-Hong Gao, Min-Xin Luo, Bing-Hong Huang, Pei-Chun Liao

Published on: 21 February 2020

Page: 140 - 148

DOI: 10.6165/tai.2020.65.140

Abstract

The concentration of heavy metals (HMs) in plants is determined by the background values in soil and/or the expression of genes related to HM metabolism. To determine if the bioaccumulation of HMs in Ammopiptanthus mongolicus, an evergreen desert shrub commonly used as a traditional medicine, is related to environmental background and/or tissue (organ) specific, the HM concentrations (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn) in the soil, roots, stems, and leaves of A. mongolicus in the desert of northwestern China were measured. Efficiencies of bioconcentration, bioaccumulation, and translocation to different portions of the plant were calculated. A linear mixed-effects model was used to test the effects of environmental background and tissue specificity on bioaccumulation. The results showed that most HMs did not exceed the pollution threshold in the soil samples, and the accumulation in plants did not meet the standard of worldwide averages. The phytoaccumulation of HMs was independent of the background concentration in soil but was related to plant tissues, which reflects the low mobility of HMs in the desert, and suggesting that the phytoaccumulation is related to the metabolic capacity and/or differential expression of HM-related genes in tissues of A. mongolicus. The high translocation efficiency of mercury from the underground portion to the leaves makes A. mongolicus a potential phytoremediator for mercury contamination. However, the removal efficiency in high-dose contamination soil still needs to be further examined. This study suggests that the desert environment may lack appropriate microorganisms to decompose immobile HMs effectively. In addition, when using A. mongolicus as a medicinal plant, special attention should be paid to the accumulation of HMs in different tissues, even if they have not reached the risk threshold.

Keyword: Ammopiptanthus mongolicus, bioaccumulation, bioavailability, heavy metals, mobilization, translocation efficiency

Literature Cited

Antoniadis, V., S.M. Shaheen, J. Boersch, T. Frohne, G. Du Laing and J. Rinklebe 2017. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manage. 186: 192?200.
DOI: 10.1016/j.jenvman.2016.04.036View Article Google Scholar

Arunkumar, S. and M. Muthuselvam 2009. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J. Agric. Sci. 5: 572?576.

Badilla-Ohlbaum, R., R. Ginocchio, P.H. Rodr?guez, A. C?spedes, S. Gonz?lez, H.E. Allen and G. E. Lagos 2001. Relationship between soil copper content and copper content of selected crop plants in central Chile. Environ. Toxicol. Chem. 20(12): 2749?2757.
DOI: 10.1897/1551-5028(2001)020<2749:RBSCCA>2.0.CO;2View Article Google Scholar

Barthwal, J., P. Nair S Fau - Kakkar and P. Kakkar 2008. Heavy metal accumulation in medicinal plants collected from environmentally different sites. Biomed. Environ. Sci. 21(4): 319?324.
DOI: 10.1016/S0895-3988(08)60049-5View Article Google Scholar

Bates, D., M. M?chler, B. Bolker and S. Walker 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1): 1?48.
DOI: 10.18637/jss.v067.i01View Article Google Scholar

Bontidean, I., A. Mortari, S. Leth, N.L. Brown, U. Karlson, M. M. Larsen, J. Vangronsveld, P. Corbisier and E. Cs?regi 2004. Biosensors for detection of mercury in contaminated soils. Environ. Pollut. 131(2): 255?262.
DOI: 10.1016/j.envpol.2004.02.019View Article Google Scholar

Chen, S.-b., M. Wang, S.-s. Li, Z.-q. Zhao and W.-d. E 2018. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China. J. Integr. Agric. 17(4): 765?774.
DOI: 10.1016/S2095-3119(17)61892-6View Article Google Scholar

Chiang, H.C., J.C. Lo and K.C. Yeh 2006. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri:? A genomic survey with cDNA microarray. Environ. Sci. Technol. 40(21): 6792?6798.
DOI: 10.1021/es061432yView Article Google Scholar

China Food and Drug Administration 2016. National Food Safety Standard: Determination of multiple elements in food, National Standards of the People's Republic of China. China.

Dai, Y.-J., J.-Y. Guo, Z. Dong, J.-R. Li and H.-L. Li 2017. Spatial distribution of soil particles and heavy metals under different psammophilic shrubs in the Ulan Buh desert. Huan Jing Ke Xue 38: 4809?4818 (in Chinese).

Dunn, C.E. 2007. New perspectives on biogeochemical exploration. In: Milkereit, B. (ed.). Proceedings of Exploration 07: Fifth decennial international conference on mineral exploration: 249?261.

El-Kady, A.A. and M.A. Abdel-Wahhab 2018. Occurrence of trace metals in foodstuffs and their health impact. Trends Food. Sci. Technol. 75: 36?45.
DOI: 10.1016/j.tifs.2018.03.001View Article Google Scholar

Garc?a-Carmona, M., A. Romero-Freire, M. Sierra Arag?n and F.J. Mart?n Peinado 2019. Effectiveness of ecotoxicological tests in relation to physicochemical properties of Zn and Cu polluted Mediterranean soils. Geoderma 338: 259?268.
DOI: 10.1016/j.geoderma.2018.12.016View Article Google Scholar

Geological and Mineral Industry Standards of the People's Republic of China 2016. Regional Geochemical Exploration Sample Analysis Method, Ministry of Land and Resources of the People's Republic of China. China.

Haider, S., V. Naithani, J. Barthwal and P. Kakkar 2004. Heavy metal content in some therapeutically important medicinal plants. Bull. Environ. Contam. Toxicol. 72(1): 119?127.
DOI: 10.1007/s00128-003-0249-0View Article Google Scholar

Jia, X.H., X.R. Li, J.G. Zhang and Z.S. Zhang 2008. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus’ desert habitat. Environ. Geol. 58(5): 953?962.
DOI: 10.1007/s00254-008-1575-7View Article Google Scholar

Jiang, S., M.-X. Luo, R.-H. Gao, W. Zhang, Y.-Z. Yang, Y.-J. Li and P.-C. Liao 2019. Isolation-by-environment as a driver of genetic differentiation among populations of the only broad-leaved evergreen shrub Ammopiptanthus mongolicus in Asian temperate deserts. Sci. Rep. 9(1): 12008.
DOI: 10.1038/s41598-019-48472-yView Article Google Scholar

Keiblinger, K. M., M. Schneider, M. Gorfer, M. Paumann, E. Deltedesco, H. Berger, L. J?chlinger, A. Mentler, S. Zechmeister-Boltenstern, G. Soja and F. Zehetner 2018. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure. Ecotoxicology 27(2): 217?233.
DOI: 10.1007/s10646-017-1888-yView Article Google Scholar

Khalid, S., M. Shahid, N.K. Niazi, B. Murtaza, I. Bibi and C. Dumat 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 182: 247?268.
DOI: 10.1016/j.gexplo.2016.11.021View Article Google Scholar

Kr?mer, U., I.N. Talke and M. Hanikenne 2007. Transition metal transport. FEBS Lett. 581(12): 2263?2272.
DOI: 10.1016/j.febslet.2007.04.010View Article Google Scholar

Kuznetsova, A., P.B. Brockhoff and R.H.B. Christensen 2017. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13): 1?26.
DOI: 10.18637/jss.v082.i13View Article Google Scholar

Larocque, A.C.L. and P.E. Rasmussen 1998. An overview of trace metals in the environment, from mobilization to remediation. Environ. Geol. 33(2-3): 85?91.
DOI: 10.1007/s002540050227View Article Google Scholar

Liu, G.-h. 1998. Study on the endangered reasons of Ammopiptanthus mongolicus in the desert of Alashan. Bull. Bot. Res. 18: 341?345.

Liu, M., S. Wu, B. Pan and D. Wang 2017. Geographical distribution and habitat characteristic of Ammpopiptanthus Cheng f. (Fabaceae) in China. Arid Land Geogr. 2: 380?387.

Luo, Z.B., J. He, A. Polle and H. Rennenberg 2016. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol. Adv. 34(6): 1131?1148.
DOI: 10.1016/j.biotechadv.2016.07.003View Article Google Scholar

Mapelli, F., R. Marasco, A. Balloi, E. Rolli, F. Cappitelli, D. Daffonchio and S. Borin 2012. Mineral–microbe interactions: Biotechnological potential of bioweathering. J. Biotechnol. 157(4): 473?481.
DOI: 10.1016/j.jbiotec.2011.11.013View Article Google Scholar

Mej?re, M. and L. B?low 2001. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19(2): 67?73.
DOI: 10.1016/S0167-7799(00)01534-1View Article Google Scholar

Patra, M. and A. Sharma 2000. Mercury toxicity in plants. The Botanical Review 66(3): 379?422.
DOI: 10.1007/BF02868923View Article Google Scholar

Rasheed, F., Z. Zafar, Z. A. Waseem, M. Rafay, M. Abdullah, M.M.A. Salam, M. Mohsin and W.R. Khan 2020. Phytoaccumulation of Zn, Pb, and Cd in Conocarpus lancifolius irrigated with wastewater: does physiological response influence heavy metal uptake? Int. J. Phytoremediation 22: 287?294.
DOI: 10.1080/15226514.2019.1658711View Article Google Scholar

Reeves, R.D., A.J.M. Baker, T. Jaffr?, P.D. Erskine, G. Echevarria and A. van der Ent 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218(2): 407?411.
DOI: 10.1111/nph.14907View Article Google Scholar

Rieuwerts, J.S., I. Thornton, M.E. Farago and M. R. Ashmore 1998. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem. Spec. Bioavailab. 10(2): 61?75.
DOI: 10.3184/095422998782775835View Article Google Scholar

Shaban, N.S., K.A. Abdou and N.E.-H.Y. Hassan 2016. Impact of toxic heavy metals and pesticide residues in herbal products. Beni Suef Univ. J. Basic Appl. Sci. 5(1): 102?106.
DOI: 10.1016/j.bjbas.2015.10.001View Article Google Scholar

Shangguan, Y., B. Cheng, L. Zhao, H. Hou, J. Ma, Z. Sun, Y. Xu, R. Zhao, Y. Zhang, X. Hua, X. Huo and X. Zhao 2018. Distribution assessment and source identification using multivariate statistical analyses and artificial neutral networks for trace elements in agricultural soils in Xinzhou of Shanxi Province, China. Pedosphere 28(3): 542?554.
DOI: 10.1016/S1002-0160(17)60304-7View Article Google Scholar

Suska-Malawska, M., M. Sulwi?ski, M. Wilk, A. Otarov and M. M?trak 2019. Potential eolian dust contribution to accumulation of selected heavy metals and rare earth elements in the aboveground biomass of Tamarix spp. from saline soils in Kazakhstan. Environ. Monit. Assess. 191(2): 57.
DOI: 10.1007/s10661-018-7179-0View Article Google Scholar

Swapna, K.S., N. Salim, R. Chandra and J.T. Puthur 2015. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins. Environ. Monit. Assess. 187(9): 551.
DOI: 10.1007/s10661-015-4732-yView Article Google Scholar

Sylvain, B., M.-H. Mikael, M. Florie, J. Emmanuel, S. Marilyne, B. Sylvain and M. Domenico 2016. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena 136(1-2): 44?52.
DOI: 10.1016/j.catena.2015.07.008View Article Google Scholar

van der Ent, A., A.J.M. Baker, R.D. Reeves, A.J. Pollard and H. Schat 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362(1-2): 319?334.
DOI: 10.1007/s11104-012-1287-3View Article Google Scholar

Wang, W., J. Chen, J. Li, Y. Zhang, Z. Shao and B. Kuai 2007. Extraordinary accumulations of antioxidants in Ammopiptanthus mongolicus (Leguminosae) and Tetraena mongolica (Zygophyllaceae) distributed in extremely stressful environments. Bot. Stud. 48: 55?61.

Wu, S.-H., B.-H. Huang, J. Gao, S. Wang and P.-C. Liao 2019. The effects of afforestation on soil bacterial communities in temperate grassland are modulated by soil chemical properties. PeerJ 7: e6147.
DOI: 10.7287/peerj.6147v0.1/reviews/1View Article Google Scholar

Wu, S.-H., B.-H. Huang, C.-L. Huang, G. Li and P.-C. Liao 2017. The aboveground vegetation type and underground soil property mediate the divergence of soil microbiomes and the biological interactions. Microb. Ecol. 75(2): 434?446.
DOI: 10.1007/s00248-017-1050-7View Article Google Scholar

Yang, T., M.-L. Chen and J.-H. Wang 2015. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends Analyt. Chem. 66: 90?102.
DOI: 10.1016/j.trac.2014.11.016View Article Google Scholar