Research Paper
Lowest copy nuclear genes in disentangling plant molecular systematics
Anjan Hazra, Sriparna Bhowmick, Chandan Sengupta, Sauren Das
Published on: 17 August 2020
Page: 413 - 422
DOI: 10.6165/tai.2020.65.413
Abstract
In recent years, low copy nuclear genes became a promising choice in plant phylogeny and systematic studies for being bi-parentally inherited and highly variable, thus possessing more phylogenetically informative sites in contrast to widely used organellar genes. Here, a set of nuclear genes has been fished out from the plant genome database targeting their single copy presence in whole genomes of most of the taxa. Low copy genes, that are yet to be included in molecular phylogenetic studies of plants, were selected. All group of green plants from algae to angiosperm has been considered for validating these markers towards determining both species level and deep lineage hierarchy. The reconstructed phylogeny with selected genes, in present work, exhibited good resolution up to family level with high statistical support. Moreover, NAD, PS54, P4H, CDIPT, and GTF could also serve well up to higher rank clustering. Concatenated species tree through best predicted substitution model with and without third codon position corroborated the prospects of nuclear gene-based phylogeny with some incongruences in the hierarchy. The study acclaimed fourteen low copy nuclear genes concerning the determination of their efficacy toward inferring the taxonomic relationship of green plants which might be used in further molecular systematics and population genetic studies.
Keyword: Angiosperm, low copy nuclear genes, molecular systematics, phylogenomics, plants
Literature Cited
Babineau, M., E. Gagnon, A. Bruneau, 2013. Phylogenetic utility of 19 low copy nuclear genes in closely related genera and species of caesalpinioid legumes. S. Afr. J. Bot. 89: 94?105.
DOI: 10.1016/j.sajb.2013.06.018View Article
Google Scholar
Bell, C.D., D.E. Soltis, P.S. Soltis, 2010. The age and diversification of the angiosperms re?revisited. Am. J. Bot. 97(8): 1296?1303.
DOI: 10.3732/ajb.0900346View Article
Google Scholar
Buckler, E.S., A. Ippolito, T.P. Holtsford. 1997. The evolution of ribosomal DNA divergent paralogues and phylogenetic implications. Genetics 145(3): 821?832.
Cacho, N.I., S.Y. Strauss. 2013. Single?copy nuclear gene primers for Streptanthus and other Brassicaceae from genomic scans, published data, and ESTs. Appl. Plant Sci. 1(7): 1200002.
DOI: 10.3732/apps.1200002View Article
Google Scholar
Chase, M.W., M. Christenhusz, M. Fay, J. Byng, W.S. Judd, D. Soltis, D. Mabberley, A. Sennikov, P.S. Soltis, and P.F. Stevens. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181(1): 1?20.
DOI: 10.1111/boj.12385View Article
Google Scholar
Christenhusz, M.J. and J.W. Byng. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261(3): 201?217.
DOI: 10.11646/phytotaxa.261.3.1View Article
Google Scholar
Cruz-Mazo, G., M. Buide, R. Samuel, and E. Narbona. 2009. Molecular phylogeny of Scorzoneroides (Asteraceae): Evolution of heterocarpy and annual habit in unpredictable environments. Mol. Phylogenetics Evol. 53(3): 835?847.
DOI: 10.1016/j.ympev.2009.08.001View Article
Google Scholar
Davis, C.C., Z. Xi, and S. Mathews. 2014. Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there. BMC biology 12(1): 11.
DOI: 10.1186/1741-7007-12-11View Article
Google Scholar
De Smet, R., K.L. Adams, K. Vandepoele, M.C. Van Montagu, S. Maere, and Y. Van De Peer. 2013. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. PNAS 110(8): 2898?2903.
DOI: 10.1073/pnas.1300127110View Article
Google Scholar
Duarte, J. M., Wall, P. K., Edger, P. P., Landherr, L. L., Ma, H., Pires, P. K., Leebens-Mack, J. and Claude, W. D. 2010. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evolutionary Biology 10(1): 61.
DOI: 10.1186/1471-2148-10-61View Article
Google Scholar
Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5): 1792?1797.
DOI: 10.1093/nar/gkh340View Article
Google Scholar
Goodstein, D.M., S. Shu, R. Howson, R. Neupane, R.D. Hayes, J. Fazo, T. Mitros, W. Dirks, U. Hellsten, and N. Putnam. 2011. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40(D1): D1178?D1186.
DOI: 10.1093/nar/gkr944View Article
Google Scholar
Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5): 696?704.
DOI: 10.1080/10635150390235520View Article
Google Scholar
Hazra, A., N. Dasgupta, C. Sengupta, and S. Das. 2019. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics 111(6): 1929?1945.
DOI: 10.1016/j.ygeno.2019.01.004View Article
Google Scholar
Hazra, A., P. Nandy, C. Sengupta, and S. Das. 2018. MIPS sequences: a promising molecular consideration in angiosperm phylogeny and systematics. BioTechnologia 99(1): 5?12.
DOI: 10.5114/bta.2018.73558View Article
Google Scholar
Hilu, K.W., C.M. Black, and D. Oza. 2014. Impact of gene molecular evolution on phylogenetic reconstruction: A case study in the Rosids (superorder Rosanae, Angiosperms). PLoS One 9(6): e99725.
DOI: 10.1371/journal.pone.0099725View Article
Google Scholar
Jansen, R.K., Z. Cai, L.A. Raubeson, H. Daniell, C.W. Depamphilis, J. Leebens-Mack, K.F. M?ller, M. Guisinger-Bellian, R.C. Haberle, and A.K. Hansen. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. PNAS 104(49): 19369?19374.
DOI: 10.1073/pnas.0709121104View Article
Google Scholar
Knoop, V. 2004. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr. Genet. 46(3): 123?139.
DOI: 10.1007/s00294-004-0522-8View Article
Google Scholar
Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7): 1870?1874.
DOI: 10.1093/molbev/msw054View Article
Google Scholar
Lamesch, P., T.Z. Berardini, D. Li, D. Swarbreck, C. Wilks, R. Sasidharan, R. Muller, K. Dreher, D.L. Alexander, and M. Garcia-Hernandez. 2011. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40(D1): D1202?D1210.
DOI: 10.1093/nar/gkr1090View Article
Google Scholar
Letsch, H.O. and K.M. Kjer, 2011. Potential pitfalls of modelling ribosomal RNA data in phylogenetic tree reconstruction: evidence from case studies in the Metazoa. BMC Evolutionary Biology 11(1): 146.
DOI: 10.1186/1471-2148-11-146View Article
Google Scholar
Li, H.-T., T.-S. Yi, L.-M. Gao, P.-F. Ma, T. Zhang, J.-B. Yang, M.A. Gitzendanner, P.W. Fritsch, J. Cai, and Y. Luo. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5(5): 461.
DOI: 10.1038/s41477-019-0421-0View Article
Google Scholar
Li, M., J Wunder,. G. Bissoli, E. Scarponi, S. Gazzani, E. Barbaro, H. Saedler, and C. Varotto. 2008. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24(5): 727?745.
DOI: 10.1111/j.1096-0031.2008.00207.xView Article
Google Scholar
Li, Z., A.R. De La Torre, L. Sterck, F.M. C?novas, C. Avila, I. Merino, J.A. Cabezas, M.T. Cervera, P.K. Ingvarsson, and Y. Van De Peer. 2017. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol. Evol. 9(5): 1130?1147.
DOI: 10.1093/gbe/evx070View Article
Google Scholar
Li, Z., J. Defoort, S. Tasdighian, S. Maere, Y. Van De Peer, and R. De Smet. 2016. Gene duplicability of core genes is highly consistent across all angiosperms. The Plant Cell 28(2): 326?344.
DOI: 10.1105/tpc.15.00877View Article
Google Scholar
Lu, L., P.W. Fritsch, B.C. Cruz, H. Wang, and D.-Z. Li. 2010. Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae). Mol. Phylogenet. Evol. 57(1): 364?379.
DOI: 10.1016/j.ympev.2010.06.002View Article
Google Scholar
Lu, Y., J.-H. Ran, D.-M. Guo, Z.-Y. Yang, and X.-Q. Wang. 2014. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One 9(9): e107679.
DOI: 10.1371/journal.pone.0107679View Article
Google Scholar
Maddison, W.P. and D.R. Maddison. 2019. Mesquite: a modular system for evolutionary analysis. Version 3.51 http://www.mesquiteproject.org
Moore, M.J., C.D. Bell, P.S. Soltis, and D.E. Soltis. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. PNAS 104(49): 19363?19368.
DOI: 10.1073/pnas.0708072104View Article
Google Scholar
Moore, M.J., N. Hassan, M.A. Gitzendanner, R.A. Bruenn, M. Croley, A. Vandeventer, J.W. Horn, A. Dhingra, S.F. Brockington, and M. Latvis. 2011. Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int. J. Plant Sci. 172(4): 541?558.
DOI: 10.1086/658923View Article
Google Scholar
Moore, M.J., P.S. Soltis, C.D. Bell, J.G. Burleigh, and D.E. Soltis. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. PNAS 107(10): 4623?4628.
DOI: 10.1073/pnas.0907801107View Article
Google Scholar
Morton, C.M. 2011. Newly sequenced nuclear gene (Xdh) for inferring angiosperm phylogeny1. Ann. Mo. Bot. Gard. 98(1): 63?90.
DOI: 10.3417/2008107View Article
Google Scholar
Nei, M. and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford university press.
Ness, R.W., S.W. Graham, and S.C. Barrett. 2011. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae. Mol. Biol. Evol. 28(11): 3009?3018.
DOI: 10.1093/molbev/msr119View Article
Google Scholar
One Thousand Plant Transcriptomes Initiative 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574(7780): 679.
DOI: 10.1038/s41586-019-1693-2View Article
Google Scholar
Proost, S., M. Van Bel, L. Sterck, K. Billiau, T. Van Parys, Y. Van De Peer, and K. Vandepoele. 2009. PLAZA: a comparative genomics resource to study gene and genome evolution in plants. The Plant Cell 21(12): 3718?3731.
DOI: 10.1105/tpc.109.071506View Article
Google Scholar
Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D.E. Soltis, P.S. Soltis, M. Zanis, E.A. Zimme, Z. Chen, V. Savolainen, and M.W. Chase. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402(6760): 404?407.
DOI: 10.1038/46536View Article
Google Scholar
Rambaut, A. and A. Drummond. 2015. FigTree, ver. 1.4. 2. Available: http:/tree.bio.ed.ac.uk/software/figtree/.
Regier, J.C., J.W. Shultz, A. Zwick, A. Hussey, B. Ball, R. Wetzer, J.W. Martin, and C.W. Cunningham. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463(7284): 1079?1083.
DOI: 10.1038/nature08742View Article
Google Scholar
Rokas, A., B.L. Williams, N. King, and S.B. Carroll. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960): 798?804.
DOI: 10.1038/nature02053View Article
Google Scholar
Salas?Leiva, D.E., A.W. Meerow, J. Francisco?Ortega, M. Calonje, M.P. Griffith, D.W. Stevenson, and K. Nakamura. 2014. Conserved genetic regions across angiosperms as tools to develop single?copy nuclear markers in gymnosperms: an example using cycads. Mol. Ecol. Resour. 14(4): 831?845.
DOI: 10.1111/1755-0998.12228View Article
Google Scholar
S?nchez, R., F. Serra, J. T?rraga, I. Medina, J. Carbonell, L. Pulido, A. De Mar?a, S. Capella-Gut?errez, J. Huerta-Cepas, and T. Gabald?n. 2011. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res. 39(suppl_2): W470?W474.
DOI: 10.1093/nar/gkr408View Article
Google Scholar
Sang, T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit. Rev. Biochem. Mol. Biol. 37(3): 121?147.
DOI: 10.1080/10409230290771474View Article
Google Scholar
Smith, S.A., N.G. Wilson, F.E. Goetz, C. Feehery, S.C. Andrade, G.W. Rouse, G. Giribet, and C.W. Dunn. 2011. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480(7377): 364?368.
DOI: 10.1038/nature10526View Article
Google Scholar
Struck, T.H., C. Paul, N. Hill, S. Hartmann, C. H?sel, M. Kube, B. Lieb, A. Meyer, R. Tiedemann, and G. Purschke. 2011. Phylogenomic analyses unravel annelid evolution. Nature 471(7336): 95?98.
DOI: 10.1038/nature09864View Article
Google Scholar
Sun, M., D.E. Soltis, P.S. Soltis, X. Zhu, J.G. Burleigh, and Z. Chen. 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol. Phylogenet. Evol. 83: 156?166.
DOI: 10.1016/j.ympev.2014.11.003View Article
Google Scholar
Van Bel, M., T. Diels, E. Vancaester, L. Kreft, A. Botzki, Y. Van De Peer, F. Coppens, and K. Vandepoele. 2017. PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res. 46(D1): D1190?D1196.
DOI: 10.1093/nar/gkx1002View Article
Google Scholar
Villesen, P. 2007. FaBox: an online toolbox for fasta sequences. Mol. Ecol. Notes 7(6): 965?968.
DOI: 10.1111/j.1471-8286.2007.01821.xView Article
Google Scholar
Wu, F., L. A. Mueller, D. Crouzillat, V. P?tiard, and S.D. Tanksley. 2006. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174(3): 1407?1420.
DOI: 10.1534/genetics.106.062455View Article
Google Scholar
Yuan, Y.W., C. Liu, H.E. Marx, and R.G. Olmstead. 2009. The pentatricopeptide repeat (PPR) gene family, a tremendous resource for plant phylogenetic studies. New Phytol. 182(1): 272?283.
DOI: 10.1111/j.1469-8137.2008.02739.xView Article
Google Scholar
Zeng, L., N. Zhang, Q. Zhang, P.K. Endress, J. Huang, and H. Ma. 2017. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol. 214(3): 1338?1354.
DOI: 10.1111/nph.14503View Article
Google Scholar
Zeng, L., Q. Zhang, R. Sun, H. Kong, N. Zhang, and H. Ma. 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5(1): 1?12.
DOI: 10.1038/ncomms5956View Article
Google Scholar
Zhang, N., L. Zeng, H. Shan, and H. Ma. 2012. Highly conserved low?copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 195(4): 923?937.
DOI: 10.1111/j.1469-8137.2012.04212.xView Article
Google Scholar
Zhu, Q. and S. Ge. 2005. Phylogenetic relationships among A?genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol. 167(1): 249?265.
DOI: 10.1111/j.1469-8137.2005.01406.xView Article
Google Scholar