Research Paper
Diversity patterns of life forms and phenolic profiles of endemic Nepeta plants along an aridity gradient of a high-mountain zone in Central Asia
Alexey Yu Astashenkov, Evgeniya A. Karpova, Vera A. Cherymushkina
Published on: 12 November 2021
Page: 541 - 556
DOI: 10.6165/tai.2021.66.541
Abstract
For the first time, the diversity of life forms and phenolic profiles of five high-altitude species of Nepeta endemic to Central Asia were studied by cluster analysis and principal component analysis. We revealed effects of climatic factors on the average number of short modules and the average length of long modules making up the perennial axis of the plant as well as on concentrations of cinnamic and chlorogenic acids, cynaroside, isoquercitrin, and total phenolics. The significance of edaphic factors was also shown. The species inhabiting stony and movable substrates form mainly long modules (N. densiflora, N. kokamirica). Under conditions of local moistening, life form with maximum length of long modules develops (N. transiliensis), whereas grass-covered soils promote the formation of short modules (N. mariae and N. pulchella). The findings made it possible to reconstruct the course of evolutionary transformations of life forms for the studied Nepeta species. The phenolic profiles were species-specific, but their geographic variation does not match the geographic variation of morphological traits. The highest concentrations of isoquercitrin and total phenolic compounds in N. densiflora (12.0 and 56.7 mg·g-1 dry weight) - the species presumably closest to the ancestral form - indicate a decrease in the quercetin level during aridization in the course of evolution. The phenolic profile of this species, also characterized by high concentrations of chlorogenic and rosmarinic acids and of luteolin glycosides, is described for the first time in the genus and means that N. densiflora is a unique resource for therapeutic applications.
Keyword: Adaptation, climate aridization, edaphic factors, geographic variation, Nepeta, ontogenesis
Literature Cited
Agakhanjanz, O.E. and S.W. Breckle. 2002. Plant diversity and endemism in high mountains of Central Asia, the Caucasus and Siberia. In: K?rner, C. and E. Spehn (eds.), Mountain Biodiversity: A Global Assessment: 109–120. Parthenon Publ. Group, Boca Raton FL.
DOI: 10.4324/9780429342585-9View Article
Google Scholar
Aras, A., E. Bursal and M. Dogru. 2016. UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. lydiae. J. Appl. Pharm. Sci. 6: 9–13.
DOI: 10.7324/JAPS.2016.601102View Article
Google Scholar
Arila, K.E. and A. Gupta. 2016. Life-forms and biological spectrum along the altitudinal gradient in Montane Forests of Senapati district of Manipur in North-East India. Pleione 10: 80–89.
Astashenkov, A.Y. and V.A. Cheryomushkina. 2019. The Role of Dormant Buds in Transformation of Herbaceous Biomorphs (by the Example of Nepeta L. sect. Spicatae (Benth.) Pojark.). Biol. Bull. 46(6): 562–569.
DOI: 10.1134/S1062359019040046View Article
Google Scholar
Astashenkov, A.Y., V.A. Cheryomushkina, A.B. Myrzagaliyeva and B.Z. Medeubayeva 2019. Ontogenesis, estimation of coenopopulation state and component composition in Nepeta densiflora Kar. et Kir. (Lamiaceae) individuals of East Kazakhstan. Int. J. Environ. Stud. 76(4): 634–647.
DOI: 10.1080/00207233.2018.1509496View Article
Google Scholar
Baitha, S. and V. Pandey. 2003. Silica gel chromatographic study of phenolic compounds in some cultivated cucurbits. Himalayan Journal of Sciences 1(2): 123–125.
DOI: 10.3126/hjs.v1i2.211View Article
Google Scholar
Barth?l?my, D. and Y. Caraglio. 2007. Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny. Ann. Bot. 99(3): 375–407.
DOI: 10.1093/aob/mcl260View Article
Google Scholar
Bell, A.D. and P.B. Tomlinson. 1980. Adaptive architecture in rhizomatous plants. Bot. J. Linn. Soc. 80(2): 125–160.
DOI: 10.1111/j.1095-8339.1980.tb01662.xView Article
Google Scholar
Bell, A.D. 1986. The simulation of branching patterns in modular organisms. Phil. Trans. R. Soc. Lond. B. 313(1159): 143–159.
DOI: 10.1098/rstb.1986.0030View Article
Google Scholar
Bo?njak-Neum?ller, J., M. Radakovi?, N. Djeli?, B. Vukovi?-Ga?i?, Z. D. Stevanovi?, S. Kolarevi?, D. Mi?i?, M. Stankovi?, J. Kne?evi?-Vuk?evi?, B. Spremo-Potparevi? and Z. Stanimirovi?. 2017. Nepeta rtanjensis (Lamiaceae), a plant endemic to the Balkans: Phenolic composition, antioxidant activity, and in vitro antigenotoxic effects in triiodothyronine-induced DNA damage in human lymphocytes. Pak. J. Pharm. Sci. 30: 625–634.
Bruy, D., T. Hattermann, L. Barrabe, A. Mouly, D. Barth?l?my and S. Isnard. 2018. Evolution of plant architecture, functional diversification and divergent evolution in the genus Atractocarpus (Rubiaceae) for New Caledonia. Front. Plant Sci. 9: 1–17.
DOI: 10.3389/fpls.2018.01775View Article
Google Scholar
Budantsev, A.L. 1993. Synopsis of the genus Nepeta (Lamiaceae). Botanicheskii Zhurnal 78(1): 91–105.
Charles-Dominique, T., C. Edelin, J. Brisson and A. Bouchard. 2012. Architectural strategies of Rhamnus cathartica (Rhamnaceae) in relation to canopy openness. Botany 90(10): 976–989.
DOI: 10.1139/b2012-069View Article
Google Scholar
Chernonosov, A.A., E.A. Karpova and E.M. Lyakh. 2017. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev. Bras. Farmacogn. 27(5): 576–579.
DOI: 10.1016/j.bjp.2017.07.001View Article
Google Scholar
Cheryomushkina, V.A. and A.A. Guseva. 2015. Life forms of Scutellaria supina L. (Lamiaceae). Contemp. Probl. Ecol. 8(5): 624–635.
DOI: 10.1134/S1995425515050054View Article
Google Scholar
Chomicki, G. 2013. Analysis of rhizome morphology of the Zingiberales in Payamino (Ecuador) reveals convergent evolution of two distinct architectural strategies. Acta Bot. Gall. 160(3-4): 239–254.
DOI: 10.1080/12538078.2013.830073View Article
Google Scholar
Das, D.S., D.S. Rawat, D. Maity, S. . Dash and B.K. Sinha. 2020. Species richness patterns of different life-forms along altitudinal gradients in the Great Himalayan National Park, Western Himalaya, India. Taiwania 65(2): 154–162.
DOI: 10.6165/tai.2020.65.154View Article
Google Scholar
Dixon, R.A. and N.L. Paiva. 1995. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 7(7): 1085–1097.
DOI: 10.2307/3870059View Article
Google Scholar
Emre, ?., M. Kursat, O. Yilmaz and P. Erecevit. 2011. Some Biological Compounds, Radical Scavenging Capacities and Antimicrobial Activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana from Turkey. Grasas y Aceites 62(1): 68–75.
DOI: 10.3989/gya.033210View Article
Google Scholar
Fick, S.E. and R.J. Hijmans. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 37(12): 4302–4315.
DOI: 10.1002/joc.5086View Article
Google Scholar
Fini, A., C. Brunetti, M. Di Ferdinando and M. Tattini. 2011. Stress induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal. Behav. 6(5): 709–711.
DOI: 10.4161/psb.6.5.15069View Article
Google Scholar
Formisano, C., D. Rigano and F. Senatore. 2011. Chemical constituents and biological activities of Nepeta species. Chem. Biodivers. 8(10): 1783–1818.
DOI: 10.1002/cbdv.201000191View Article
Google Scholar
Gatsuk, L.E., O.V. Smirnova, L.I. Vorontzova, L.B. Zaugolnova and L.A. Zhukova. 1980. Age states of plants of various growth forms: a review. J. Ecol. 68(2): 675–696.
DOI: 10.2307/2259429View Article
Google Scholar
Geng, D., X. Shen, Y. Xie, Y. Yang, R. Bian, Y. Gao, P. Li, L. Sun, H. Feng, F. Ma and Q. Guan. 2020. Regulation of phenylpropanoid biosynthesis by MdMYB88 and MdMYB124 contributes to pathogen and drought resistance in apple. Hortic. Res. 7(1): 102.
DOI: 10.1038/s41438-020-0324-2View Article
Google Scholar
Heslop-Harrison, J.S. 2017. Morphology, adaptation and speciation. Ann. Bot. 120(5): 621–624.
DOI: 10.1093/aob/mcx130View Article
Google Scholar
Hofmann, R.W., E.E. Swinny, S.J. Bloor, K.R. Markham, K.G. Ryan, B.D. Campbell, B.R. Jordan and D.W. Fountain. 2000. Responses of nine Trifolium repens L. populations to ultraviolet?B radiation: differential flavonol glycoside accumulation and biomass production. Ann. Bot. 86(3): 527–537.
DOI: 10.1006/anbo.2000.1216View Article
Google Scholar
ICH. 2005. Validation of analytical procedures: text and methodology Q2(R1). https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf. Accessed 20 March 2021.
Iscan, G., Y. K?se, B. Demirci and H.C. Baser. 2011. Anticandidal activity of the essential oil of Nepeta transcaucasica Grossh. Chem. Biodivers. 8(11): 2144–2148.
DOI: 10.1002/cbdv.201100091View Article
Google Scholar
Kamelin, R. V. 1973. Florogenetic analysis of the natural flora of Middle Asia mountains. Nauka Press, Leningrad, Russia. 356 pp.
Kamelin, R. V. 1998. Materials on the history Flora of Asia (Altai mountain country). Altai State University Press, Barnaul, Russia. 240 pp.
Karpova, E. A., T. D. Fershalova and A. A. Petruk. 2016. Flavonoids in Adaptation of Begonia grandis Dryander subsp. grandis Introduced in West Siberia (Novosibirsk). J. stress physiol. biochem. 12(3): 44–56.
Karpova, E. A., A. A. Krasnikov, T. D. Fershalova, E. V. Baikova, A. A. Petruk and Yu. L. Yakimova. 2019. Phenolic compounds and antimicrobial properties of Begonia grandis Dryand. subsp. grandis leaves. Botanica Pacifica 8(2): 51–61.
DOI: 10.17581/bp.2019.08202View Article
Google Scholar
Kashchenko, N.I. and D.N. Olennikov. 2016. Chemical profile and biological activity of flavonoids and phenylpropanoids of Nepeta cataria L. (Lamiaceae), cultivated in the Eastern Siberia. Khimija Rastitel’nogo syr’ya 2: 25–32.
Khan, S.M., S. Page, H., Ahmad and D. Harper. 2012. Anthropogenic influences on the natural ecosystem of the Naran Valley in the western Himalayas Pakistan. Pakistan J. Bot. 44: 231–238.
Khokhryakov, A.P. 1981. Evolution of plant biomorphs. Nauka Publishing House, Moscow, Russia. 168 pp.
Klime?, L. 2003. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl. Ecol. 4(4): 317–328.
DOI: 10.1078/1439-1791-00163View Article
Google Scholar
K?ksal, E., H. Tohma, ?. K?l??, Y. Alan, A. Aras, ?. G?l?in and E. Bursal. 2017. Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS. Sci. Pharm. 85(2): 24.
DOI: 10.3390/scipharm85020024View Article
Google Scholar
K?rner, C. 2007. The use of altitude in ecological research. Trends Ecol. Evol. 22(11): 569–574.
DOI: 10.1016/j.tree.2007.09.006View Article
Google Scholar
K?rner, C. 2016. Plant adaptation to cold climates [version 1; peer review: 2 approved]. F1000Research 5:2769.
DOI: 10.12688/f1000research.9107.1View Article
Google Scholar
Liu, Q., L. Luo and L. Zheng. 2018. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 19(2): 335.
DOI: 10.3390/ijms19020335View Article
Google Scholar
Liu, W., D. Yin, N. Li, X. Hou, D. Wang, D. Li and J. Liu. 2016. Influence of Environmental Factors on the Active Substance Production and Antioxidant Activity in Potentilla fruticosa L. and Its Quality Assessment. Sci. Rep. 6(1): 28591.
DOI: 10.1038/srep28591View Article
Google Scholar
Lyubarsky, E.L. 1967. Ecology of vegetative reproduction of higher plants. Kazan State University Press, Kazan, Russia. 182 pp.
Miceli, N., M.F. Taviano, D. Giuffrida, A. Trovato, O. Tzakou and E.M. Galati. 2005. Anti-inflammatory activity of extract and fractions from Nepeta sibthorpii Bentham. J. Ethnopharmacol. 97(2): 261–266.
DOI: 10.1016/j.jep.2004.11.024View Article
Google Scholar
Mi?i?, D., B. Siler, U. Ga?i?, S. Avramov, S. Zivkovi?, J. Nestorovi? ?ivkovi?, M. Milutinovi?, Z. Te?i?. 2015. Simultaneous UHPLC / DAD / (+/-) HESI – MS / MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: a possible application in chemotaxonomic studies. Phytochem. Anal. 26(1): 72–85.
DOI: 10.1002/pca.2538View Article
Google Scholar
Mkindi, A.G., Y. Tembo, E.R. Mbega, B. Medvecky, A. Kendal-Smith, I.W. Farrell, P.A. Ndakidemi, S.R. Belmain and P.C. Stevenson. 2019. Phytochemical Analysis of Tephrosia vogelii across East Africa Reveals Three Chemotypes that Influence Its Use as a Pesticidal Plant. Plants (Basel). 8(12): 597.
DOI: 10.3390/plants8120597View Article
Google Scholar
Modnicki, D., M. Tokar, and B. Klimek. 2007. Flavonoids and phenolic acids of Nepeta cataria L. var. citriodora (Becker) Balb. (Lamiaceae). Acta Pol. Pharm. 64: 247–252.
Nasirkandi, A., A. Alirezalu, S. Bahadori. 2019. Phenolic compounds and antioxidant activity of Nepeta fissa - first report from Iran. Nat. Prod. Res. 20: 1–4.
Nestorovi? ?ivkovi?, J. M., S. ?ivkovi?, B. ?iler, N. Ani?i?, S. Dmitrovi?, A. D. Rankov, Z. Giba and D. Mi?i?. 2018. Differences in bioactivity of three endemic Nepeta species arising from main terpenoid and phenolic constituents. Arch. Biol. Sci. 70(1): 63–76.
DOI: 10.2298/ABS170616026NView Article
Google Scholar
Noroozi, J. (ed.) 2020. Plant Biogeography and Vegetation of High Mountains of Central and South-West Asia, Plant and Vegetation, vol. 17. Springer Nature, Cham, Switzerland. 360 pp.
Norton, D.A. and W. Sch?nenberg. 1984. The growth forms and ecology of Nothofagus solandri at the alpine timberline, Craingieburn range, New Zealand. Arct. Alp. Res. 16(3): 361–370.
DOI: 10.2307/1550945View Article
Google Scholar
Nukhimovsky, E.L. 1997. Fundamentals of biomorphology of spermous plants, vol. 1. Theory of biomorph organization. Nedra Press, Moscow, Russia. 630 pp.
Petersen, G. and O. Seberg. 1998. Molecules vs Morphology. In: Karp, A. et al. (eds.), Molecular Tools for Screening Biodiversity, 359–364. Springer, Dordrecht, Netherlands.
Proestos, C., I.S. Boziaris, G.J.E. Nychas and M. Komaitis. 2006. Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 95(4): 664–671.
DOI: 10.1016/j.foodchem.2005.01.049View Article
Google Scholar
Ralph, J. 2010. Hydroxycinnamates in lignification. Phytochem. Rev. 9(1): 65–83.
DOI: 10.1007/s11101-009-9141-9View Article
Google Scholar
Raunkier, C. 1934. The Life Forms of Plants and Statistical Plant Geography. Oxford University Press, London. 632 pp.
Reichert, W., T. Villani, M.H. Pan, C.-T. Ho, J.E. Simon and Q. Wu. 2018. Phytochemical Analysis and Anti-Inflammatory Activity of Nepeta cataria Accessions. JMAP. 7: 19–27.
Sarikurkcu, C., M. Eskici, A. Karanfil and B. Tepe. 2019. Phenolic profile, enzyme inhibitory and antioxidant activities of two endemic Nepeta species: Nepeta nuda subsp. glandulifera and N. cadmea. S. Afr. J. Bot. 120: 298–301.
Sattler, R. and R. Rutishauser. 1997. The Fundamental Relevance of Morphology and Morphogenesis to Plant Research. Ann. Bot. 80(5): 571–582.
DOI: 10.1006/anbo.1997.0474View Article
Google Scholar
Savinykh, N.P. and V.A. Cheryomushkina. 2015. Biomorphology: Current Status and Prospect. Contemp. Probl. Ecol. 8(5): 541–549.
DOI: 10.1134/S1995425515050121View Article
Google Scholar
Serebryakov, I.G. 1962. Ecological Morphology of Plants. Vysshaya shkola, Moscow, Russia. 378 pp.
Serebryakova, T.I. 1977. General ?architecture models? of herbaceous perennial plants, and their transformed types. Bulletin of Moscow Society of Naturalist. Biological Series. 82(5): 112–128.
DOI: 10.2307/2345297View Article
Google Scholar
Serebryakova, T.I. 1980. Once again about “life form” definition for the plants. Bulletin of Moscow Society of Naturalist. Biological Series. 95: 75–86.
Sharma, A., B. Shahzad, A. Rehman, R. Bhardwaj, M. Landi and B. Zheng. 2019. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 24(13): 2452.
DOI: 10.3390/molecules24132452View Article
Google Scholar
Stecconi, M., J. G. Puntieri and D. Barth?l?my. 2010. An architectural approach to the growth forms of Nothofagus pumilio (Nothofagaceae) along an altitudinal gradient. Botany 88(8): 699–709.
DOI: 10.1139/B10-040View Article
Google Scholar
Talovskaya (Kolegova), E.B. 2015. Thymus baicalensis (Lamiaceae) Morphological Transformation under Different Environmental Condition. Contemp. Probl. Ecol. 8(5): 607–613.
DOI: 10.1134/S1995425515050133View Article
Google Scholar
Tepe, B., D. Daferera, A. S. Tepe, M. Polissiou and A. Sokmen. 2007. Antioxidant activity of the essential oil and various extracts of Nepeta flavida Hub.-Mor. from Turkey. Food Chem. 103(4): 1358–1364.
DOI: 10.1016/j.foodchem.2006.10.049View Article
Google Scholar
Title, P.O. and J.B. Bemmels. 2018. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography. 41(2): 291–307.
DOI: 10.1111/ecog.02880View Article
Google Scholar
Valkama, E., J.-P. Salminen, J. Koricheva and K. Pihlaja. 2003. Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish birch species. Ann. Bot. 91(6): 643–655.
DOI: 10.1093/aob/mcg070View Article
Google Scholar
Wang, G., G. Zhou, L. Yang and Z. L. 2002. Distribution, species diversity and life form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan mountains, Gansu, China. Plant Ecol. 165: 169–182.
Xu, B., D. Luo, Z.-M. Li and H. Sun. 2019. Evolutionary radiations of cushion plants on the Qinghai-Tibet Plateau: Insights from molecular phylogenetic analysis of two subgenera of Arenaria and Thylacospermum (Caryophyllaceae). Taxon. 68(5): 1003–1020.
DOI: 10.1002/tax.12127View Article
Google Scholar
Xu, X., H. Zhang, T. Xie, J. Yue, L. Zhao and Y. Tian. 2018. Geographical patterns of Raunkiaerian life-form spectra in China. Pakistan Journal of Botany 50: 1509–1516.
Yuan, Y., X. Tang, Z. Jia, C. Li, J. Ma and J. Zhang. 2020. The Effects of Ecological Factors on the Main Medicinal Components of Dendrobium officinale under Different Cultivation Modes. Forests. 11(1): 1–14.
DOI: 10.3390/f11010094View Article
Google Scholar