Research Paper

Moss biomonitors for heavy metal pollution in soils of Manganese Carbonate Mine across ecological succession stages

Jin-Hua Han, Zhi-Hui Wang, Zhao-Hui Zhang

Published on: 12 January 2022

Page: 83 - 92

DOI: 10.6165/tai.2022.67.83


Many plants have been widely used in monitoring and assessing heavy metal pollution in soil, air and water. However, few studies have considered the unique value of bryophyte communities in monitoring manganese ore pollution and the diversity characteristics of bryophytes in different natural succession stages. Tongluojing Manganese Mine in Guizhou Province, China, was chosen for identifying bryophytes and statistical analyses. In total 61 species of mosses in 21 genera of 7 families were identified, including 8 dominant species, primarily representing the turf life-form. Following the successive stages from bare rock to woodland, single-species moss communities decreased while multi-species communities increased, with increment of the α diversity index. However, the β diversity index showed the opposite trend. The moss similarity index was the highest (0.43) and Cody index lowest (7.5) on bare rock, while the indices were the lowest (0.17) and the highest (18), respectively, in woodland. The Nemerow pollution index decreased gradually with the successive stages, with the bare rock area being the most polluted. The soil was polluted by Pb, Cr, Zn, Cd and Mn to varying degrees, among which Mn was the biggest pollutant with a concentration 129 times higher than the background value of the soil in Guizhou Province. There was a positive correlation between the contents of Cd, Cr, Zn and Mn in Weissia planifolia Dix and those in the substrate, suggesting that W. planifolia can be used as an indicator plant. This study highlighted multiple effects of mosses on heavy metal absorption, which could be used as pioneer plants for vegetation restoration in the manganese ore waste rock accumulation area.

Keyword: Biomonitors, heavy metal pollution, manganese carbonate mine, moss diversity

Literature Cited

Angelovska, S., T. Stafilov, R. ?ajn and B.,Balabanova. 2016 Geogenic and Anthropogenic Moss Responsiveness to Element Distribution Around a Pb-Zn Mine, Toranica, Republic of Macedonia. Arch. Environ. Contam. Toxicol. 70(3): 487?505.
DOI: 10.1007/s00244-015-0251-7View Article Google Scholar

?vila-P?rez, P., H.B. Ortiz-Oliveros, G. Zaraz?a-Ortega, S. Tejeda-Vega, A. Villalva and R. S?nchez-Mu?oz. 2019 Determining of risk areas due to exposure to heavy metals in the Toluca Valley using epiphytic mosses as a biomonitor. J. Environ. Manage. 241: 138?148.
DOI: 10.1016/j.jenvman.2019.04.018View Article Google Scholar

Balabanova, B., T. Stafilov, R. ?ajn and K.B. Andonovska. 2017 Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine. J. Environ. Sci. Health A 52(3): 290?301.
DOI: 10.1080/10934529.2016.1253403View Article Google Scholar

Bargagli, R., D.H. Brown and L. Nelli. 1995 Metal biomonitori- ng with mosses: Procedures for correcting for soil contamination. Environ. Pollut. 89(2): 169?175.
DOI: 10.1016/0269-7491(94)00055-IView Article Google Scholar

Beringui, K., C.A.R. Huam?n De La, F.P.G. Maia Luiz and A. Gioda. 2021 Atmospheric Metal Biomonitoring Along a Highway Near Atlantic Rainforest Environmental Protectio n Areas in Southeastern Brazil. Bull. Environ. Contam. Toxicol. 107(1): 1?8.
DOI: 10.1007/s00128-021-03185-9View Article Google Scholar

Caballero-Segura, B., P. ?vila-P?rez, C.E. Barrera D?az, J.J.R. Garc?a, G. Zaraz?a, R. Soria, H.B. Ortiz-Oliveros. 2014 Metal content in mosses from the Metropolitan Area of the Toluca Valley: a comparative study between inductively coupled plasma optical emission spectrometry (ICP-OES) and total reflection X-ray fluorescence spectrometry (TXRF). Int. J. Environ. Anal. Chem 94(13): 1288?1301.
DOI: 10.1080/03067319.2014.940343View Article Google Scholar

Chang, C.Y., R.S. Yin, H. Zhang and L.J. Yao. 2019. Bioaccum ulation and health risk assessment of heavy metals in the soil-rice system in a typical seleniferous area, central China. Environ. Toxicol. Chem. 38(7): 1577?1584.
DOI: 10.1002/etc.4443View Article Google Scholar

Chen, Q., C. Sun and Y.M. Fang. 2013 Review on biomonitoring of bryophyte to environment Changes. World Forestry Research 26(2): 19?23.

Coelho, M.C.M., R. Gabriel, H. Hespanhol, P.A.V. Borges Paulo and C. Ah-Peng. 2021 Bryophyte Diversity along an Elevational Gradient on Pico Island (Azores, Portugal). Diversity 13(4): 162?162.
DOI: 10.3390/d13040162View Article Google Scholar

Gao, K. and F. Zhang. 2008 Characteristics of species diversity in Juglans mandshurica communities in Lishan nature reser ve, Shanxi. Ecol. Environ. 17(6): 2336?2340.

Gao, Q. 1994 Chinese Mosses: Vol. 1. Beijing: Science Press.

Gao, Q. 1996 Chinese Mosses: Vol. 2. Beijing: Science Press.

Guo, C.H., L. Liu, F.X. Tang, H.F. Dai, H.Y. Liu and J.W. Yang. 2021 Remediation effects of common wetland plants on cadmium-and lead- polluted water environment. Plant Sci. J. 39(5): 535?542.

Hristozova, G., S. Marinova, O. Motyka, V. Svozil?k and I. Zinicovscaia. 2020 Multivariate assessment of atmospher ic deposition studies in Bulgaria based on moss biomonito rs: Trends between the 2005/2006 and 2015/2016 surveys. Environ. Sci. Pollut. Res. 27(31): 39330?39342.
DOI: 10.1007/s11356-020-10005-wView Article Google Scholar

Hu, R.L. and Y.F. Wang. 2005 Chinese Mosses: Vol.7. Beijing: Science Press.

Hu, S., S.C. He, X.T. Jiang, M. Wu, P. Wang and L. Li. 2021 Forecast and Suggestions on The Demand of Lithium, Cobalt, Nickel and Manganese Resources in China’s New Energy Automobile Industry. IOP Conf. Ser. Earth Environ. Sci. 769(4): 042018
DOI: 10.1088/1755-1315/769/4/042018View Article Google Scholar

Huang, H. and Z.H. Zhang. 2017 Diversity characteristics of bryophytes in different succession stages on the karst bauxite tailing piles. Plant Sci. J. 35(6): 807–814.

Hurlbert, S.H. 1971 The nonconcept of species diversity: A critique and alternative parameters. Ecology 52(4): 577?586.
DOI: 10.2307/1934145View Article Google Scholar

Jiang, H. and Z.H. Zhang. 2013 Heavy metal accumulation of 5 bryophytes in lateritic gold deposit areas of Guizhou, China. Hubei Agricultural Sciences 52(17): 4077?4079, 4148.

Kaufmann, S. and C. Berg. 2014 Bryophyte ecology and conservation in the Troodos Mountains, Cyprus. Herzogia 27(1): 165–187.
DOI: 10.13158/heia.27.1.2014.165View Article Google Scholar

Khan, S., C. Cao, Y.M. Zheng, Y.Z. Huang and Y.G. Zhu. 2008 Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152(3): 686?692.
DOI: 10.1016/j.envpol.2007.06.056View Article Google Scholar

Li, C., Z. Zhang, Z. Wang and Q. Wu. 2020 Effects of environm ental factors and heavy metals on the vertical distributio n of bryophytes in a sinkhole environment. Plant Biology (Stuttgart, Germany) 22(5): 822?831.
DOI: 10.1111/plb.13129View Article Google Scholar

Li, J.C. and Y.Z. Xie. 1984 The idea of using supported roof, pole, and pillar method in gently inclined thin ore body of Tongluo Mine. China Manganese Industry 2(1): 15?19.

Li, X.J. 2006 Chinese Mosses: Vol.4. Beijing: Science Press.

Lin, Y.C., S.C. Hsu, C.K.C. Charles, R.J. Zhang, Y.F. Wu, S.J. Kao, L. Li, C.H. Huang, S.H. Lin and Y.T. Huang. 2016 Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals. Environ. Pollut. 208: 284?293.
DOI: 10.1016/j.envpol.2015.07.044View Article Google Scholar

Liu, R.X. and Z.H. Zhang. 2016 Heavy metal content and health risk assessment of crops in mercury mine in southeast of Guizhou Province. Modern Mining 32(6): 200?202, 204.

Long, C.B. and Z.H. Zhang. 2016 Diversity of the bryophytes and their function in monitoring metal contamination in the karst bauxite area in Guangxi. Journal of Safety and Environment 16(5): 358–363.

Lopes, G., E.T.S. Costa, E.S. Penido, D.L. Sparks and L.R.G. Guilherme. 2015 Binding intensity and metal partitioni ng in soils affected by mining and smelting activities in Minas Gerais, Brazil. Environ. Sci. Pollut. Res. 22(17): 13442?1345 2.
DOI: 10.1007/s11356-015-4613-5View Article Google Scholar

Lu, C., B.C. Ren and H.P. Ma. 2014 Evaluation of soil heavy metal pollution in Xiangtan manganese ore tailings. Shanxi Architecture 40(18): 225–226.

Ma, H.P., W.L. Zheng, Y.Q. Zhang, Y.L. Shi and Z. Dong. 2018 A preliminary study on composition and life form of bryophytes in Cibagou national nature reserve of Tibet, China. Journal of Northwest A and F University (Natural Science Edition) 46(12): 114–121, 129.

Ma, Y.H., R. Xu, L.M. Wang, K. Li, Z. Yi, Y.B. Yang and S. Li. 2021 Research progress on phytoremediation of heavy metal contaminated soils. Conservation and Utilization of Mineral Resources 41(4): 12?22.

Mani, P., Y. Kim, S.K. Lakhera, B. Neppolian and H. Choi. 2021 Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon. Chemosphere 277: 130225.
DOI: 10.1016/j.chemosphere.2021.130225View Article Google Scholar

Monni, S., M. Salemaa and N. Millar. 2000 The tolerance of Empetrum nigrum to copper and nickel. Environ. Pollut. 109(2): 221?229.
DOI: 10.1016/S0269-7491(99)00264-XView Article Google Scholar

Nath, S.K., N.S. Randhawa and S. Kumar. 2021 A review on characteristics of silico-manganese slag and its utilization into construction materials. Resour. Conserv. Recycl. 176.
DOI: 10.1016/j.resconrec.2021.105946View Article Google Scholar

Ortiz-Oliveros, H.B., D. Cruz, R.M. Flores-Espinosa, I. Santill?n-Malaqu?as, G. Zaraz?a-Ortega and A. Villalva. 2021 Evaluation of the bioaccumulation of heavy metals and 137Cs in succulent plants Echeveria elegans. Inter. J. Environ. Sci. Technol. doi: 10.1007/S13762-021-03186-5.
DOI: 10.1007/s13762-021-03186-5View Article Google Scholar

Ren, J., F. Liu, J. Zhu, Y. Luo, S. Li and X.W. Zhong. 2020 Diversity of the bryophytes and heavy metal pollution monitoring in manganese ore waste area. Journal of Safety and Environment 20(6): 2398?2407.

Ruan, M., K. Zhou, Z.L. Huang, H. Li, X. Zhang, Z.J. Wu, X.L. Qin, X.K. Wu and J. Huang. 2021 Analysis of heavy metal pollution characteristics of guest soil after restoration of abandoned lead-zinc mine area. Acta Scientiae Circumst Stantiae 41(9): 3803?3814.

Lopez, S., P. S?verine, V. Jessica, M. Jean-Louis, E. Guillaume and B. Emile. 2017 Nickel drives bacterial community diversity in the rhizosphere of the hyperaccum ulaator Alyssum murale. Soil Biol. Biochem. 114: 121?130.
DOI: 10.1016/j.soilbio.2017.07.010View Article Google Scholar

Song, Y.F. and Y.T. Shen. 2017 Distribution and speciation of lead in moss collected from a lead-zinc mining area by Micro- X-Ray fluorescence and X-Ray absorption near edge structure analysis. Chin. J. Anal. Chem. 45(9): 1309–1315.

Tang, Y. Q., Q.W. Li, W.L. Zuo and J. Wang. 2019 Analysis of applicability of Nemerow index method in evaluation of water quality of Beidaihe national wetland park. Environ. Eng. 37(8): 195–199.

Tucker, D. and C.L. Farge. 2021 Bryophyte communities in Quercus garryana ecosystems on South East Vancouver Island: Preliminary mesohabitat assessment. The Bryologist 124(2): 198?217.
DOI: 10.1639/0007-2745-124.2.198View Article Google Scholar

Turkyilmaz, A., H. Sevik and M. Cetin. 2018 The use of perenni al needles as biomonitors for recently accumulated heavy metals. Landsc. Ecol. Eng. 14(1): 115?120.
DOI: 10.1007/s11355-017-0335-9View Article Google Scholar

Wang, D.F. and Z.H. Zhang. 2020 Higher plants as bioindicators of metal contamination from Shangdong abandoned Karst bauxite, southwestern China. Plant Biology 22(2): 323–330.
DOI: 10.1111/plb.13062View Article Google Scholar

Weng, W.X. and X.W. Zhou. 1984 Study on comminuted properties of Tongluojing carbonate manganese ore in Zunyi City. Chinese Manganese Industry 2(1): 38–42.

Woods, C.L., K. Maleta and K. Ortmann. 2021 Plant-plant interactions change during succession on nurse logs in a northern temperate rainforest. Ecol. Evol. 11(14): 9631?9641.
DOI: 10.1002/ece3.7786View Article Google Scholar

Wo?, B., M. Pietrzykowski, A. J?zefowska. 2018 Reclaimed mine soil substrates and tree stands vs. successional forest floor vegetation: A case study of developing ecosystems on afforested mine sites. Ecological Engineering 120: 504–512.
DOI: 10.1016/j.ecoleng.2018.07.010View Article Google Scholar

Wu, P.C. 1998 Bryophyte Biology. Beijing: Science Press.

Wu, P.C. 2002 Chinese Mosses: Vol.6. Beijing: Science Press.

Wu, P.C. and Y. Jia. 2004 Chinese Mosses: Vol.8. Beijing: Science Press.

Wu, X.J. and C.J. Li. 2015 Analysis and study on environmental geological characteristics of mining in Guizhou province. Nonferrous Metals Abstract. 30(4): 49?51.

Wu, Y.S., Z.X. Wei and X.M. Wu. 2012 Application and researc h of mining methods in Changgou Manganese Mine. China’s Manganese Industry 30(4): 16?18.

Xie, S.R., B. Peng, X.Y. Tang and C.X. Yu. 2007 Environmenta l geochemistry of the waste rock dump in the Taojiang manganese deposit, Hunan, China. Geological Bulletin of China (3): 335-343.

Yuan, L.X., N.Y. Long, Z.Q. Xie, X.B. Yin, H.H. Luo, X.Y. Xu and L.F. Sun. 2006 Study on modern pollution source and bio-indicator in Ny-lesund, arctic. Chinese Journal of Polar Research 19(1): 9?20.

Zaraz?a-Ortega, G., J. Poblano-Bata, S. Tejeda-Vega, P. ?vila-P?rez, C. Zepeda-G?mez, H Ortiz-Oliveros and G Macedo-Miranda 2013 Assessment of spatial variability of heavy metals in metropolitan zone of Toluca Valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis. Sci. World J. 2013: 426492
DOI: 10.1155/2013/426492View Article Google Scholar

Zeng, S.C., Z.S. Xie and B.G. Chen. 2002 Trace element analysis of several forest plants and litters. Journal of South China Agricultural University 23(2): 58?61.

Zhang, B.M. 1987 Discussion on manganese dressing process of Tongluo mine in Zunyi. Metal Mine 22(1): 54?56.

Zheng, Y.R. 1998 Species diversity of Daqinggou forest plant community. Biodiversity Science 6(3): 31-36.

Zhu, G.H., W.J. Liu, Y. Wen, X.Y. Liao and L. Sun. 2021 Potential of arsenate-reducing bacterial inoculants to enhance field-scale remediation of arsenic contaminated soils by Pteris vittata L. Ecol. Eng. 169: 106312.
DOI: 10.1016/j.ecoleng.2021.106312View Article Google Scholar