2022 vol.67 no.4
pp.469-478

Research Paper

Investigation of genetic diversity of squash (Cucurbita maxima Duchesne) genotypes collected from Erzincan in Turkey

Hüseyin Bulut, Halil İbrahim Ozturk, Veysel Donderalp, Recep Korkut, Atilla Dursun

Published on: 05 September 2022

Page: 469 - 478

DOI: 10.6165/tai.2022.67.469

PDF Download pdf
2022 vol.67 no.4 pp.469-478

Literature

Abstract

Plant genetic resources constitute the most valuable assets of countries. It is of great importance to determine the genetic variation among these resources and to use the data in breeding studies. Cucurbita maxima species in the Cucurbitaceae family have high genetic diversity, but molecular genetic diversity studies of this species are insufficient in Turkey. To determine the genetic diversity among genotypes of Cucurbita maxima species of squash, which is widely grown in Erzincan, 14 different squash genotypes collected were examined based on the morphological parameters and molecular characteristics. According to the evaluated morphological characteristics, we can say that genotype 5 should be evaluated in breeding programs. In addition, in crossbreeding studies, the heterosis feature is more successful in types with a long genetic distance. In the study, the longest genetic distance was found between genotypes 5 and 48. Simple sequence repeat (SSR) markers were used to determine genetic diversity at the molecular level. The analysis of morphological characterization within genotypes showed a wide variability in morphological traits of plant, flower, fruit, and leaf. Seven SSR markers yielded a total of 23 polymorphic bands, the number of alleles per marker ranged from 2 to 5, and the mean number of alleles was 3.286. Polymorphic information content (PIC) ranged from 0.00 (GMT-M61) to 0.202 (GMT-P25), and the mean PIC value per marker was 0.130. Cluster analysis using Nei's genetic distance determined that 14 genotypes were divided into 3 major groups.

Keyword: Characterization, Cucurbita maxima, genetic diversity, squash, SSR markers

Abstract

Literature

Anderson, J.A, G.A. Churchill, J.E. Autrique, M.E. Sorells and S.D. Tanksley 1993. Optimizing parental selection for genetic-linkage maps. Genome 36(1): 181–186
DOI: 10.1139/g93-024View Article Google Scholar

Aruah, C.B., M.I. Uguru, B.C. Oyiga 2010. Variations among some Nigerian Cucurbita landraces. Afr. J. Plant Sci. 4(10): 374–386.

Balkaya, A., M. ?zbakir and E.S. Kurtar 2010. The phenotypic diversity and fruit characterization of winter squash (Cucurbita maxima) populations from the Black Sea Region of Turkey. Afr. J. Biotechnol. 9(2): 152–162.

Balkaya, A., R. Yanmaz and M. ?zbakir 2009. Evaluation of variation in seed characters of Turkish winter squash (Cucurbita maxima) populations. N. Z. J. Crop Hortic. Sci. 37(3): 167–178.
DOI: 10.1080/01140670909510262View Article Google Scholar

Blair, M.W., A. Sole and A. J. Cortes 2012. Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS One 7(11): e49488.
DOI: 10.1371/journal.pone.0049488View Article Google Scholar

Corazza-Nunes, M.J., M. A. Machado, W.M.C. Nunes, M. Cristofani and M.L.P.N. Targon 2002. Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126(2): 169–176.
DOI: 10.1023/A:1016332030738View Article

Dalda-?ekerci, A., K. Karaman and H. Yeti?ir. 2020. Characterization of ornamental pumpkin (Cucurbita pepo L. var. ovifera (L.)Alef.) Genotypes: molecular, morphological and nutritional properties. Genet. Resour. Crop Evol. 67(3), 533–547.
DOI: 10.1007/s10722-020-00883-xView Article Google Scholar

Dar, A.A. R. Mahajan, P. Lay and S. Sharma 2017. Genetic diversity and population structure of Cucumis sativus L. by using SSR markers. 3 Biotech 7(5): 1–12.
DOI: 10.1007/s13205-017-0944-xView Article Google Scholar

Duman, ?.E., A.T. Uncu and A. Kayrald?z 2020. Genetic diversity analysis with the development of new SSR markers in Cucurbita pepo L. population. TURJAF 8(12): 2518–2527.
DOI: 10.24925/turjaf.v8i12.2518-2527.3201View Article Google Scholar

Ferriol, M., B. Pico? and F. Nuez 2003. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genet. Resour. Crop Evol. 50(3): 227–238.
DOI: 10.1023/A:1023502925766View Article

Ferriol, M., B. Pico? and F. Nuez 2004. Morphological and molecular diversity of a collection of Cucurbita maxima landraces. J. Am. Soc. Hortic. Sci. 129(1): 60–69.
DOI: 10.21273/JASHS.129.1.0060View Article Google Scholar

Ge, Y., X. Li, X.X. Yang, C.S. Cui and S.P. Qu 2015. Genetic linkage map of Cucurbita maxima with molecular and morphological markers. Genet. Mol. Res. 14(2): 5480–5484.
DOI: 10.4238/2015.May.22.18View Article Google Scholar

Hamdi, K., J. Ben-Amor, K. Mokrani, N. Mezghanni and N. Tarchoun 2017. Assessment of the genetic diversity of some local squash (Cucurbita maxima Duchesne) populations revealed by agromorphological and chemical traits. J. New Sci. 42(5): 2306–2317.

Hegay, S., M. Geleta, T. Bryngelsson, L. Garkava-Gustavsson, H.P. Hovmalm and R. Ortiz 2012. Comparing genetic diversity and population structure of common beans grown in Kyrgyzstan using microsatellites. Crop Sci. 1(4): 63–75.

Ishii, T., Y. Xu and S.R. McCouch 2001. Nuclear-and chloroplast-microsatellite variation in A-genome species of rice. Genome 44(4): 658–666.
DOI: 10.1139/g01-044View Article Google Scholar

Jasim Aljumaili, S., M.Y. Rafii, M.A. Latif, S.Z.I.W. Sakimin, Arolu and G. Miah 2018. Genetic diversity of aromatic rice germplasm revealed by SSR markers. BioMed Research International 2018: 7658032.
DOI: 10.1155/2018/7658032View Article Google Scholar

Karaman, K., A. Dalda-?ekerci, H. Yeti?ir, O. G?l?en and ?.F. Co?kun 2018. Molecular, morphological and biochemical characterization of some Turkish bitter melon (Momordica charantia L.) genotypes. Ind. Crops Prod. 123: 93–99.
DOI: 10.1016/j.indcrop.2018.06.036View Article Google Scholar

Kashi, Y., D.G. King. and M. Soller. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends Genet. 13(2): 74–78.
DOI: 10.1016/S0168-9525(97)01008-1View Article Google Scholar

Katzir, N., E. Leshzeshen, G.Tzuri, N. Reis, Y. Danin-Poleg and H.S. Paris 1998. Relationships among accessions of Cucurbita pepo based on ISSR analysis. In Cucurbitaceae 98: 331–335.

Katzir, N., Y. Tadmor, G. Tzuri, E. Leshzeshen, N. Mozes-Daube, Y. Danin-Poleg and H.S. Paris. 2000. Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. Acta Hortic. 510: 433–440pp.
DOI: 10.17660/ActaHortic.2000.510.69View Article Google Scholar

Kayak, N., ?. T?rkmen, A.T. Uncu and Y. Dal 2018. Characterization of edible seed pumpkin (Cucurbita pepo L.) lines by SSR (Simple Sequence Repeat) markers. Manas Journal of Agriculture Veterinary and Life Sciences 8(2): 17–24.

Ka?mi?ska, K., K. Sobieszek, M. Targo?ska, A. Korzeniewska, K. Niemirowicz-Szczytt and G. Bartoszewski 2016. Genetic diversity analysis of winter squash (Cucurbita maxima Duchesne) accessions using SSR markers. In Cucurbitaceae 2016: 210–213.

Ka?mi?ska, K., K. Sobieszek, M. Targo?ska, A. Korzeniewska, K. Niemirowicz-Szczytt and G. Bartoszewski. 2017. Genetic diversity assessment of a winter squash and pumpkin (Cucurbita maxima Duchesne) germplasm collection based on genomic Cucurbita-conserved SSR markers. Sci. Hortic. 219: 37–44.
DOI: 10.1016/j.scienta.2017.02.035View Article Google Scholar

Kiramana, J.K., D.K. Isutsa and A.B. Nyende. 2017. Fluorescent SSR markers and capillary electrophoresis reveal significant genetic diversity in naturalized pumpkin accessions in Kenya. GJBB 6(1): 34–45

Kitavi, M.N., D.K. Kiambi, B. Haussman, K. Semagn, G. Muluvi, M. Kairichi and J. Machuka 2014. Assessment of the genetic diversity and pattern of relationship of West African sorghum accessions using microsatellite markers. Afr. J. Biotechnol. 13(14): 1503–1514.
DOI: 10.5897/AJB08.1030View Article Google Scholar

Klaedtke, S.M., L. Caproni, J. Klauck, P. De la Grandville, M. Dutartre, M. P. Stassart, V. Chable, V. Negri and L. Raggi 2017. Short-term local adaptation of historical common bean (Phaseolus vulgaris L.) varieties and implications for in situ management of bean diversity. Int. J. Mol. Sci. 18(3): 493.
DOI: 10.3390/ijms18030493View Article Google Scholar

Konopacka, D., A. Seroczynska, A. Korzeniewska, K. Jesionkowska, K. Niemirowicz-Szczytt and W. P?ocharski 2010. Studies on the usefulness of Cucurbita maxima for the production of ready-to-eat dried vegetable snacks with a high carotenoid content. LWT 43(2): 302–309.
DOI: 10.1016/j.lwt.2009.08.012View Article Google Scholar

K???k, A., K. Abak and N. Sari 2002. Cucurbit genetic resources collections in Turkey. In First Ad Hoc Meeting on Cucurbit Genetic Resources 19: 46–51.

Kurtar, E. S., M. Seymen, ?. T?rkmen and M. Paksoy 2018. The performances of some edible pumpkin inbreed lines (Cucurbita pepo L.) in Bafra conditions. Manas Journal of Agriculture Veterinary and Life Sciences 8(2): 1–9.

Lewontin, R.C. 1972. The apportionment of human diversity. Evol. Biol. 14: 381–398. Springer, New York, NY.

Li, Y., A. Korol, T. Fahima, A. Bailes and E. Nevo 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Eco. 11(12): 2453–2465.
DOI: 10.1046/j.1365-294X.2002.01643.xView Article Google Scholar

Litt, M. and J.A. Luty 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44(3): 397.

Liu, K. and S. V. Muse 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9): 2128–2129.
DOI: 10.1093/bioinformatics/bti282View Article Google Scholar

Mashilo, J., S. Hussein, A. Odindo and B. Amelework 2017. Assessment of the genetic diversity of dessert watermelon (Citrullus lanatus var. lanatus) landrace collections of South Africa using SSR markers. Aust. J. Crop Sci. 11(11): 1392–1398.
DOI: 10.21475/ajcs.17.11.11.pne461View Article Google Scholar

Merheb, J., M. Pawe?kowicz, F. Branca, H. Bolibok-Br?goszewska, A. Skarzy?ska, W. Pl?der and L. Chalak 2020. Characterization of lebanese germplasm of snake melon (Cucumis melo subsp. melo var. flexuosus) using morphological traits and SSR markers. Agronomy 10(9): 1293.
DOI: 10.3390/agronomy10091293View Article Google Scholar

Mimura, Y., T. Inoue, Y. Minamiyama and N. Kubo 2012. An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps. Breed. Sci. 62(1): 93–98.
DOI: 10.1270/jsbbs.62.93View Article Google Scholar

Miyatake, K., Y. Shinmura, H. Matsunaga, H. Fukuoka and T. Saito 2019. Construction of a core collection of eggplant (Solanum melongena L.) based on genome-wide SNP and SSR genotypes. Breed. Sci. 69(3): 498–502.
DOI: 10.1270/jsbbs.18202View Article Google Scholar

Mohammadi, S.A. and B.M. Prassana 2003. Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci. 43(4): 1235-1248
DOI: 10.2135/cropsci2003.1235View Article Google Scholar

Mujaju, C., J. Sehic, G. Werlemark, L. Garkava?Gustavsson, M. Fatih and H. Nybom 2010. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147(4): 142–153.
DOI: 10.1111/j.1601-5223.2010.02165.xView Article Google Scholar

Nei, M. 1972. Genetic distance between populations. Am. Nat. 106(949): 283-292.
DOI: 10.1086/282771View Article Google Scholar

Ntuli, N., R. Tongoona, P.B. and A. M. Zobolo 2015. Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers. Sci. Hortic., 189: 192–200.
DOI: 10.1016/j.scienta.2015.03.020View Article Google Scholar

Nyabera, L.A., I.W. Nzuki, S.M. Runo and P.W. Amwayi 2021. Assessment of genetic diversity of pumpkins (Cucurbita spp.) from western Kenya using SSR molecular markers. Mol. Bio. Rep. 48(3): 2253–2260.
DOI: 10.1007/s11033-021-06245-9View Article Google Scholar

?zt?rk, H.?., A. Dursun, A. Hosseinpour and K. Halilo?lu 2020. Genetic diversity of pinto and fresh bean (Phaseolus vulgaris L.) germplasm collected from Erzincan province of Turkey by inter-primer binding site (iPBS) retrotransposon markers. Turk. J. Agric. For. 44(4): 417–427.
DOI: 10.3906/tar-2002-9View Article Google Scholar

Paris, H.S., N. Yonash, V. Portnoy, N. Mozes-Daube, G. Tzuri and N. Katzir 2003. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor. Appl. Genet. 106(6): 971–978.
DOI: 10.1007/s00122-002-1157-0View Article Google Scholar

Pevicharova, G and N. Velkov 2017. Sensory, chemical and morphological characterization of Cucurbita maxima and Cucurbita moschata genotypes from different geographical origins. Genetika 49(1): 193–202.
DOI: 10.2298/GENSR1701193PView Article Google Scholar

Powell, W., G.C. Machray and J. Provan 1996. Polymorphism Revealed by Simple Sequence Repeats. Trends Plant Sci. 1(7): 215–221.
DOI: 10.1016/S1360-1385(96)86898-0View Article Google Scholar

Pratami, M.P., T. Chikmawati and R. Rugayah 2019. Further morphological evidence for separating Mukia Arn. from Cucumis L. Biodiversitas 20(1): 211–217.
DOI: 10.13057/biodiv/d200124View Article Google Scholar

Pritchard, J.K., M. Stephens and P. Donnelly 2000. Inference of population structure using multilocus genotype data. Genetics 155(2): 945–959.
DOI: 10.1093/genetics/155.2.945View Article Google Scholar

Queller, D.C., J.E. Strassmann and C.R. Hughes. 1993. Microsatellites and kinship. Trends Ecol. Evol. 8(8): 285–288.
DOI: 10.1016/0169-5347(93)90256-OView Article Google Scholar

Rohlf, F.J. 1992. NTSYS-PC: Numerical taxonomy and multivariate analysis system. Applied Biostatistics.

Ruizhen, H.F., X. Zhangying, A. Talukdar and Z. Guiquan 2004. Genetic diversity of different Waxy geneotypes in rice. Mol. Plant Breed. 2(2): 179–186.

Saghai-Maroof, M. A., K.M. Soliman, R.A. Jorgensen and R.W.L. Allard 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PNAS 81(24): 8014–8018.
DOI: 10.1073/pnas.81.24.8014View Article Google Scholar

Shirasawa, K., E. Asamizu, H. Fukuoka, A. Ohyama, S. Sato, Y. Nakamura and S. Isobe 2010. An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor. Appl. Genet. 121(4): 731–739.
DOI: 10.1007/s00122-010-1344-3View Article Google Scholar

UPOV 2009. Descriptors for pumpkin (Cucurbita maxima Duch.). Guidelines for the conduct of tests for distinctness, uniformity and stability. TG/155/4 Rev. (https://www.upov.int/edocs/tgdocs/en/tg155.pdf).

Wimalasiri, D., T. Piva, S. Urban and T. Huynh 2016. Morphological and genetic diversity of Momordica cochinchinenesis (Cucurbitaceae) in Vietnam and Thailand. Genet. Resour. Crop Evol. 63(1): 19–33.
DOI: 10.1007/s10722-015-0232-8View Article Google Scholar

Xu, Y., S.R. Guo, S. Shu, Y. Ren and J. Sun 2017. Construction of a genetic linkage map of rootstock-used pumpkin using SSR markers and QTL analysis for cold tolerance Sci. Horti. 220: 107–113.
DOI: 10.1016/j.scienta.2017.03.051View Article Google Scholar

Yeh, F.C., R.C. Yang and T.P. Boyle 1999. Version 1.31. Microsoft Windows-based freeware for population genetic analysis. University of Alberta/CIFOR, Edmonton.

Yildiz, M., H.E. Cuevas, S. Sensoy, C. Erdinc and F.S. Baloch 2015. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources. Biochem. Syst. Ecol. 59: 45–53.
DOI: 10.1016/j.bse.2015.01.006View Article Google Scholar

Yu, K., S. J. Park, V. Poysa. and P. Gepts 2000. Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J. Heredity 91(6): 429–434.
DOI: 10.1093/jhered/91.6.429View Article Google Scholar

Yunli, W., W. Yangyang, X. Wenlong, W. Chaojie, C. Chongshi and Q. Shuping 2020. Genetic diversity of pumpkin based on morphological and SSR markers. Pak. J. Bot. 52(2): 477–487.
DOI: 10.30848/PJB2020-2(6)View Article Google Scholar

Zargar, S. M., S. Farhat, R. Mahajan, A. Bhakhri and A. Sharma 2016. Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean. Saudi J. Biol. Sci. 23(1): 139–149.
DOI: 10.1016/j.sjbs.2014.11.011View Article Google Scholar

Zhang, C., .S. Pratap, S. Natarajan, L. Pugalendhi, S. Kikuchi, H. Sassa, N. Senthil and T. Koba 2012. Evaluation of morphological and molecular diversity among South Asian germplasms of Cucumis sativus and Cucumis melo. ISRN Agronomy 134: 1–11.
DOI: 10.5402/2012/134134View Article Google Scholar

Zheng, D., T. Yun, Z. Zhang, C. Deng and L. Xie 2016. Study on genetic diversity and relationship for the Hainan island landraces of Cucurbita moschata. J of Nuclear Agri Sci. 30(5): 869–877 (In Chinese).