Research Paper

The invasion of alien species Miconia crenata (Vahl) Michelang in disturbed/undisturbed lowland mixed dipterocarp and Kerangas forests in Sabah, Malaysia

Thian Yew Loke, James A. Margrove, Berhaman Ahmad, Grace E. Jikim, Alkinson C. Endawie, Syahrir Mhd. Hatta, Anis P. Andrew, Colin R. Maycock

Published on: 02 June 2023

Page: 255 - 260

DOI: 10.6165/tai.2023.68.255


Understanding the factors that make a site susceptible to invasion is essential to mitigate the impacts of invasive alien plant species (IAPS) on biodiversity. Miconia crenata is one of the few IAPS that can colonize undisturbed tropical rainforests. In this study, we investigate the abundance of Miconia crenata in disturbed and undisturbed lowland mixed dipterocarp forest and Kerangas forests in Sabah, Malaysia. Three 400 m long transects were established within each of the four sites. The transects ran from the forest edge into the interior, and eight 25 m2 plots were established at fixed distances along each transect. A further twenty 100 m2 plots were established in each of the undisturbed sites of Kabili-Sepilok Forest Reserve. We found that the density of Miconia crenata was significantly lower along the transects in the Kerangas forest, compared to mixed dipterocarp forest. Miconia crenata densities were also significantly lower along transects in the undisturbed forest compared to the disturbed forest. Within the undisturbed sites, Miconia crenata was 13 times more abundant in the mixed dipterocarp forest compared to the Kerangas forest. This difference in Miconia crenata abundance between the two forest types is probably due to soil fertility, with fertile sites more susceptible to invasion by Miconia crenata.

Keyword: Biodiversity loss, forest disturbance, invasive plant, Kabili-Sepilok Forest Reserve, Melastomataceae, tropical forest

Literature Cited

Burnham, K.P., Anderson, D.R. 2002 Model selection and multimodel inference. Springer New York, New York, NY.
DOI: 10.1007/b97636View Article

Calcagno, V., de Mazancourt, C. 2010 glmulti: An R package for easy automated model selection with (Generalized) Linear Models. J. Stat. Softw. 34(12): 1–29.
DOI: 10.18637/jss.v034.i12View Article Google Scholar

Dai, Z.C., Wan, L.Y., Qi, S.S., Rutherford, S., Ren, G.Q., Wan, J.S., Du, D. L. 2020 Synergy among hypotheses in the invasion process of alien plants: a road map within a timeline. Perspect Plant Ecol. Evol. Syst. 47: 125575.
DOI: 10.1016/j.ppees.2020.125575View Article Google Scholar

Davis, M.A., Grime, J.P., Thompson, K. 2000. Fluctuations resources in plant communities: a general theory of invasibility. J. Ecol. 88(3): 528–534.
DOI: 10.1046/j.1365-2745.2000.00473.xView Article Google Scholar

Dawson, W., Burslem, D.F.R.P., Hulme, P.E. 2015. Consistent effects of disturbance and forest edges on the invasion of a continental rain forest by alien plants. Biotropica 47(1): 27–37.
DOI: 10.1111/btp.12183View Article Google Scholar

D?bert, T.F., Webber, B.L., Sugau, J.B., Dickinson, K.J.M., Didham, R.K. 2018. Logging, exotic plant invasions, and native plant reassembly in a lowland tropical rain forest. Biotropica 50(2): 254–265.
DOI: 10.1111/btp.12521View Article Google Scholar

Dyderski, M. K., Jagodzi?ski, A.M. 2018. Drivers of invasive tree and shrub natural regeneration in temperate forests. Biol. Invasions 20(9): 2363–2379.
DOI: 10.1007/s10530-018-1706-3View Article Google Scholar

Erdelen, W.R. 2020. Shaping the fate of life on Earth: The post?2020 global biodiversity framework. Glob. Policy 11(3): 347–359.
DOI: 10.1111/1758-5899.12773View Article Google Scholar

Essl, F., Latombe, G., Lenzner, B., Pagad, S., Seebens, H., Smith, K., Wilson, J.R., Genovesi, P. 2020. The Convention on Biological Diversity (CBD)’s Post-2020 target on invasive alien species–what should it include and how should it be monitored? NeoBiota 62: 99–121.
DOI: 10.3897/neobiota.62.53972View Article Google Scholar

Fuentes-Lillo, E., Lembrechts, J.J., Cavieres, L. A., Jim?nez, A., Haider, S., Barros, A., Pauchard, A. 2021. Anthropogenic factors overrule local abiotic variables in determining non-native plant invasions in mountains. Biol. Invasions 23(12): 3671–3686
DOI: 10.1007/s10530-021-02602-8View Article Google Scholar

Fujinuma, J., Harrison, R.D. 2012 Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in peninsular Malaysia. Wright J (Ed.). PLoS ONE 7(5): e37321.
DOI: 10.1371/journal.pone.0037321View Article Google Scholar

Huebner, C.D., Steinman, J., Hutchinson, T.F., Ristau, T. E., Royo, A.A. 2014 The distribution of a non-native (Rosa multiflora) and native (Kalmia latifolia) shrub in mature closed-canopy forests across soil fertility gradients. Plant Soil 377(1-2): 259–276.
DOI: 10.1007/s11104-013-2000-xView Article Google Scholar

Ibanez, T., Gross, J., Hart, P., Ainsworth, A., Mallinson, J., Monello, R. 2020. Spatiotemporal patterns of alien plant invasions in one of the last pristine wet forests of Hawai'i. Pacific Sci. 74(2): 99–113.
DOI: 10.2984/74.2.1View Article Google Scholar

Kleiber, C., Zeileis, A. 2020. AER: Applied Econometrics with R. R package version 1.2-9, URL

Le, C., Fukumori, K., Hosaka, T., Numata, S., Hashim, M. and Kosaki, T. 2018 The distribution of an invasive species, Clidemia hirta along roads and trails in Endau Rompin National Park, Malaysia. Trop. Conserv. Sci. 11: 194008291775281.
DOI: 10.1177/1940082917752818View Article Google Scholar

Lembrechts, J.J., Rossi, E., Milbau, A., Nijs, I. 2018. Habitat properties and plant traits interact as drivers of non-native plant species’ seed production at the local scale. Ecol. Evol. 8(8): 4209–4223.
DOI: 10.1002/ece3.3940View Article Google Scholar

Li, Y., Norland, M. 2001 The role of soil fertility in invasion of Brazilian pepper (Schinus terebinthifolius) in Everglades National Park, Florida. Soil Sci. 166(6): 400–405.
DOI: 10.1097/00010694-200106000-00005View Article Google Scholar

Love, K., Kurz, D.J., Vaughan, I.P., Ke, A., Evans, L.J., Goossens, B. 2017 Bearded pig (Sus barbatus) utilisation of a fragmented forest–oil palm landscape in Sabah, Malaysian Borneo. Wildl. Res. 44(8): 603.
DOI: 10.1071/WR16189View Article Google Scholar

Mahali, M., Johari, S.A., Hashim M. S. R., Nilus, R., Juahir, H., Maycock, C.R., Hashim, M., How-Phua, M., Bidin, K. 2020 An application of non-parametric method and simple linear regression in rainfall partitioning in tropical lowland forest of Sepilok Forest Reserve, Sabah. ASM Sci. J. 13: 1–8.
DOI: 10.32802/asmscj.2020.sm26(1.2)View Article Google Scholar

Margrove, J.A., Burslem, D.F.R.P., Ghazoul, J., Khoo, E., Kettle, C.J., Maycock, C. R. 2015 Impacts of an extreme precipitation event on Dipterocarp mortality and habitat filtering in a Bornean tropical rain forest. Biotropica 47(1): 66–76.
DOI: 10.1111/btp.12189View Article Google Scholar

Martin, P.H., Canham, C.D., Marks, P.L. 2009 Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front. Ecol. Environ. 7(3): 142–149.
DOI: 10.1890/070096View Article Google Scholar

Mollot, G., Pantel, J.H., Romanuk, T.N. 2017 The effects of invasive species on the decline in species richness: a global meta-analysis. Adv. Ecol. Res. 56: 61–83.
DOI: 10.1016/bs.aecr.2016.10.002View Article Google Scholar

Nilus, R., Maycock, C.R., Majalap-Lee, N., Burslem, D.F. 2011 Nutrient limitation of tree seedling growth in three soil types found in Sabah. J. Trop. For. Sci. 23(6): 133–142.

Padmanaba, M., Corlett, R. 2014 Minimizing risks of invasive alien plant species in tropical production forest management. Forests 5(8): 1982–1998.
DOI: 10.3390/f5081982View Article Google Scholar

Palombo, M.R. 2021 Thinking about the biodiversity loss in this changing world. Geosciences 11(9): 370.
DOI: 10.3390/geosciences11090370View Article Google Scholar

Peh, K.S-H. 2010 Invasive species in Southeast Asia: the knowledge so far. Biodivers. Conserv. 19(4): 1083–1099.
DOI: 10.1007/s10531-009-9755-7View Article Google Scholar

Peters, H.A. 2001 Clidemia hirta invasion at the Pasoh Forest Reserve: An unexpected plant invasion in an undisturbed tropical forest. Biotropica 33(1): 60–68.
DOI: 10.1111/j.1744-7429.2001.tb00157.xView Article Google Scholar

Powell, K.I., Chase, J.M., Knight, T.M. 2011 A synthesis of plant invasion effects on biodiversity across spatial scales. Amer. J. Bot. 98(3): 539–548.
DOI: 10.3732/ajb.1000402View Article Google Scholar

Qie, L., Lewis S. L., Sullivan, M.J.P., Lopez-Gonzalez, G., Pickavance, G.C., Sunderland, T., Ashton, P., Hubau, W., Abu Salim, K., Aiba, S-I., Banin, L.F., Berry, N., Brearley, F.Q., Burslem, D.F.R.P., Dan??k, M., Davies, S.J., Fredriksson, G, Hamer, K.C., H?dl, R., Kho L.K., Kitayama, K., Krisnawati, H., Lhota, S., Malhi, Y., Maycock, C., Metali, F., Mirmanto, E., Nagy, L., Nilus, R., Ong, R., Pendry, C.A., Poulsen, A.D., Primack, R.B., Rutishauser, E., Samsoedin, I., Saragih, B., Sist, P., Slik, J.W.F., Sukri, R.S., Sv?tek, M., Tan, S., Tjoa, A., van Nieuwstadt, M., Vernimmen, R.R.E., Yassir, I., Kidd, P.S., Fitriadi, M., Ideris, N.K.H., Serudin, R.M., Abdullah Lim L.S., Saparudin, M.S., Phillips, O.L. 2017 Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat Commun 8: 1966.
DOI: 10.1038/s41467-017-01997-0View Article Google Scholar

R Core Team 2020 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from:

Rejm?nek, M., Richardson, D.M., Py?ek, P. 2013 Plant invasions and invasibility of plant communities. In: van der Maarel E, Franklin J (Eds), Vegetation Ecology. John Wiley & Sons, Ltd, Oxford, UK, 387–424.

Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D. 2021 MASS: Support functions and datasets for Venables and Ripley’s MASS. Available from: (August 29, 2021).

Rojas-Sandoval, J., Acevedo-Rodr?guez, P. 2021 Clidemia hirta (Koster's curse). CABI Compendium. CAB International, Wallingford, UK.
DOI: 10.1079/cabicompendium.13934View Article Google Scholar

Ross, J., Hearn, A.J., Johnson, P.J., Macdonald, D.W. 2013 Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk: Activity of Sunda clouded leopards and their prey. J. Zool. 290(2): 96–106.
DOI: 10.1111/jzo.12018View Article Google Scholar

Sellan, G. 2019. Ecological responses of a Bornean heath forest (kerangas) to experimental lime and nitrogen addition. [Dissertation]. Manchester Metropolitan University, UK. Available from:

Sellan, G., Brearley, F.Q., Nilus, R., Titin, J., Majalap-Lee, N. 2021 Differences in soil properties among contrasting soil types in northern Borneo. J. Trop. For. Sci. 33(2): 191–202.
DOI: 10.26525/jtfs2021.33.2.191View Article Google Scholar

Spitz, F. and Janeau, G. 1995 Daily selection of habitat in wild boar (Sus scrofa). J. Zool. 237(3): 423–434.
DOI: 10.1111/j.1469-7998.1995.tb02772.xView Article Google Scholar

Teo, D.H.L., Tan, H.T.W., Corlett, R.T., Wong, C.M., Lum, S.K.Y. 2003 Continental rain forest fragments in Singapore resist invasion by exotic plants: Singapore rain forest resists plant invasions. J. Biogeogr. 30(2): 305–310.
DOI: 10.1046/j.1365-2699.2003.00813.xView Article Google Scholar

Turbelin, A., Catford, J.A. 2021 Invasive plants and climate change. In: Climate Change. Elsevier, 515–539.

van der Ent, A., Nkrumah, P.N., Aarts, M.G., Baker, A.J., Degryse, F., Wawryk, C., Kirby, J.K. 2021 Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. BMC Plant Biol. 21(1): 437.
DOI: 10.1186/s12870-021-03190-4View Article Google Scholar

Waddell, E.H, Chapman, D.S., Hill, J.K., Hughes, M., Sailim, A., Tangah, J., Banin, L.F. 2020a Trait filtering during exotic plant invasion of tropical rainforest remnants along a disturbance gradient. Funct. Ecol. 34(12): 2584–2597.
DOI: 10.1111/1365-2435.13679View Article Google Scholar

Waddell, E.H., Banin, L.F., Fleiss, S., Hill, J.K., Hughes, M., Jelling, A., Yeong, K.L., Ola, B.B., Sailim, A.B., Tangah, J., Chapman, D.S. 2020b Land-use change and propagule pressure promote plant invasions in tropical rainforest remnants. Landscape Ecol 35(9): 1891–1906.
DOI: 10.1007/s10980-020-01067-9View Article Google Scholar

Wanigasinghe, I.M., Gunaratne, A.M.T.A. 2020 Does Clidemia hirta (L.) D.Don affect natural regeneration from soil seed bank in Halgolla Forest, Sri Lanka? In: Proceedings of the International Research Conference of Uva Wellassa University. Uva Wellassa University, Sri Lanka. Available from:

Xu, H., Cao, Y., Yu, D., Cao, M., He, Y., Gill, M., Pereira, H. M. 2021. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5(4): 411-418.
DOI: 10.1038/s41559-020-01375-yView Article Google Scholar

Zefferman, E., Stevens, J.T., Charles, G.K., Dunbar-Irwin, M., Emam, T., Fick, S., Morales, L.V., Wolf, K.M., Young, D.J.N., Young, T.P. 2015 Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB Plants 7: plv056.
DOI: 10.1093/aobpla/plv056View Article Google Scholar