Research Paper

Mapping distribution of woody plant species richness from field rapid assessment and machine learning

Bo-Hao Perng, Tzeng Yih Lam, Su-Ting Cheng, Sheng-Hsin Su, Kristina J. Anderson-Teixeira, N.A. Bourg, D.F.R.P. Burslem, N. Castaño, Á. Duque, S. Ediriweera, N. Gunatilleke, J.A. Lutz, W.J. McShea, M.D. Md Sabri, V. Novotny, Michael J. O'Brien, Glen Reynolds, George D. Weiblen, Daniel Zuleta

Published on: 01 January 2024

Page: 1 - 15

DOI: 10.6165/tai.2024.69.1

Abstract

Sustainable forest management needs information on spatial distribution of species richness. The objectives of this study were to understand whether knowledge, method, and effort of a rapid assessment affected accuracy and consistency in mapping species richness. A simulation study was carried out with nine 25–50 ha census plots located in tropical, subtropical, and temperate zones. Each forest site was first tessellated into non-overlapping cells. Rapid assessment was conducted in all cells to generate a complete coverage of proxies of the underlying species richness. Cells were subsampled for census, where all plant individuals were identified to species in these census cells. An artificial neural network model was built using the census cells that contain rapid assessment and census information. The model then predicted species richness of cells that were not censused. Results showed that knowledge level did not improve the accuracy and consistency in mapping species richness. Rapid assessment effort and method significantly affected the accuracy and consistency. Increasing rapid assessment effort from 10 to 40 plant individuals could improve the accuracy and consistency up to 2.2% and 2.8%, respectively. Transect reduced accuracy and consistency by up to 0.5% and 0.8%, respectively. This study suggests that knowing at least half of the species in a forest is sufficient for a rapid assessment. At least 20 plant individuals per cell is recommended for rapid assessment. Lastly, a rapid assessment could be carried out by local communities that are familiar with their forests; thus, further supporting sustainable forest management.

Keyword: artificial neural network, rapid biodiversity assessment, sustainable forest management, forest planning

Literature Cited

Anderson?Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez?Akre, E.B., Muller?Landau, H.C., Wright, S.J., Salim, K.A., Zambrano, .................. Turner, B. L., Uriarte, M., Valencia, R., Vallejo, M.I., Vicentini, A., Vr?ka, T., Wang, X., Wang, X., Weiblen, G., Wolf, A., Xu, H., Yap, S., Zimmerman, J. 2015 CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Ecol. Biol. 21(2): 528–549.
DOI: 10.1111/gcb.12712View Article Google Scholar

Baskerville, G.L. 1986 Understanding Forest Management. For. Chron. 62(4): 339–347.
DOI: 10.5558/tfc62339-4View Article Google Scholar

Bourg, N.A., McShea, W.J., Thompson, J.R., McGarvey, J.C., Shen, X. 2013 Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot. Ecology 94(9): 2111–2112.
DOI: 10.1890/13-0010.1View Article Google Scholar

Chong, G.W., Reich, R.M., Kalkhan, M. A., Stohlgren, T.J. 2001 New approaches for sampling and modeling native and exotic plant species richness. Western North American Naturalist 61(3): 328–335.
DOI: 10.1093/aobpla/plv100View Article Google Scholar

Condit, R., Hubbell, S.P., Lafrankie, J.V., Sukumar, R., Manokaran, N., Foster, R.B., Ashton, P.S. 1996 Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J. Ecol. 84(4): 549–562.
DOI: 10.2307/2261477View Article Google Scholar

Condit, R., P?rez, R., Aguilar, S., Lao, S. 2019a Census data from 65 tree plots in Panama, 1994–2015. DataONE, Dataset.

Condit, R., P?rez, R., Aguilar, S., Lao, S., Foster, R., Hubbell, S. P. 2019b BCI 50-ha plot taxonomy, 2019 version. Dryad, Dataset.

Condit, R., P?rez, R., Aguilar, S., Lao, S., Foster, R., Hubbell, S.P. 2019c Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, 2019 version. Dryad, Dataset.

Coops, N.C., Bolton, D.K., Hobi, M.L., Radeloff, V.C. 2019 Untangling multiple species richness hypothesis globally using remote sensing habitat indices. Ecol. Indic. 107: 105567.
DOI: 10.1016/j.ecolind.2019.105567View Article Google Scholar

Duque, A., Muller-Landau, H.C., Valencia, R., Cardenas, D., Davies, S., de Oliveira, A., P?rez, ?.J., Romero-Saltos, H., Vicentini, A. 2017 Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodivers. Conserv. 26(3): 669–686.
DOI: 10.1007/s10531-016-1265-9View Article Google Scholar

Fayolle, A., Engelbrecht, B., Freycon, V., Mortier, F., Swaine, M., R?jou-M?chain, M., Doucet, J.-L., Fauvet, N., Cornu, G., Gourlet-Fleury, S. 2012 Geological substrates shape tree species and trait distributions in African moist forests. PLOS ONE 7(8): e42381.
DOI: 10.1371/journal.pone.0042381View Article Google Scholar

FSC. 2012 FSC Principles and Criteria for Forest Stewardship. FSC-STD-01-001 V5-0 EN, Forest Stewardship Council.

Gascon, C., Brooks, T.M., Contreras-MacBeath, T., Heard, N., Konstant, W., Lamoreux, J., Launay, F., Maunder, M., Mittermeier, R.A., Molur, S., Al Mubarak, R.K., Parr, M.J., Rhodin, A.G.J., Rylands, A.B., Soorae, P., Sanderson, J.G., Vi?, J. -C. 2015 The importance and benefits of species. Curr. Biol. 25(10): R431–R438.
DOI: 10.1016/j.cub.2015.03.041View Article Google Scholar

Haas, P.J., Liu, Y., Stokes, L. 2006 An estimator of number of species from quadrat sampling. Biometrics 62(1): 135–141.
DOI: 10.1111/j.1541-0420.2005.00390.xView Article Google Scholar

Hall, J.P. 2001 Criteria and indicators of sustainable forest management. Environ. Monit. Assess. 67(1): 109–119.
DOI: 10.1023/A:1006433132539View Article

Hern?ndez-Stefanoni, J.L., Ponce-Hernandez, P. 2004 Mapping the spatial distribution of plant diversity indices in a tropical forest using multi-spectral satellite image classification and field measurements. Biodivers. Conserv. 13(14): 2599-2621.
DOI: 10.1007/s10531-004-2137-2View Article Google Scholar

Hern?ndez-Stefanoni, J.L., Pineda, J.B., Valdes-Valadez, G. 2006 Comparing the use of indigenous knowledge with classification and ordination techniques for assessing the species composition and structure of vegetation in a tropical forest. Environ. Manage. 37(5): 686–702.
DOI: 10.1007/s00267-004-0371-8View Article Google Scholar

Hubbell, S.P., Foster, R.B., O’Brien, S.T., Harms, K.E., Condit, R., Wechsler, B., Wright, S.J., Loo de Lao, S. 1999 Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283(5401): 554–557.
DOI: 10.1126/science.283.5401.554View Article Google Scholar

Huber, P.J. 1964 Robust estimation of a location parameter. Ann. Math. Statist. 35(1): 73–101.
DOI: 10.1214/aoms/1177703732View Article Google Scholar

Humphreys, A.M., Govaerts, R., Ficinski, S.Z., Lughadha, E.N., Vorontsova, M.S. 2019 Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3(7): 1043–1047.
DOI: 10.1038/s41559-019-0906-2View Article Google Scholar

Khasbagan, Soyolt. 2008 Indigenous knowledge for plant species diversity: a case study of wild plants’ folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China. J. Ethnobiol. Ethnomedicine 4(1): 2.
DOI: 10.1186/1746-4269-4-2View Article Google Scholar

Kingma, D.P., Ba, J. 2015 Adam: A Method for Stochastic Optimization. In: Bengio, Y., LeCun, Y. (eds), 3rd International Conference on Learning Representations ICLR 2015, 7-9 May 2015. San Diego, CA, USA, 1–15.

Lam, T.Y., Hsu, Y.-H., Yang, T.-R., Kershaw, J.A., Su, S.-H. 2018 Sampling with probability proportional to prediction: rethinking rapid plant diversity assessment. Forestry 91(1): 17–26.
DOI: 10.1093/forestry/cpx044View Article Google Scholar

Lam, T.Y., Kleinn, C. 2008 Estimation of tree species richness from large area forest inventory data: Evaluation and comparison of jackknife estimators. For. Ecol. Manag. 255(3–4): 1002–1010.
DOI: 10.1016/j.foreco.2007.10.007View Article Google Scholar

Lutz, J.A., Larson, A.J., Freund, J.A., Swanson, M.E., Bible, K.J. 2013 The Importance of large-diameter trees to forest structural heterogeneity. PLOS ONE 8(12): e82784.
DOI: 10.1371/journal.pone.0082784View Article Google Scholar

Lutz, J.A., Larson, A.J., Furniss, T.J., Donato, D.C., Freund, J.A., Swanson, M.E., Bible, K.J., Chen, J., Franklin, J.F. 2014 Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga–Tsuga forest. Ecology 95(8): 2047–2054.
DOI: 10.1890/14-0157.1View Article Google Scholar

Lynch, T.B. 2017 Optimal sample size and plot size or point sampling factor based on cost-plus-loss using the Fairfield Smith relationship for plot size. Forestry 90(5): 697–709.
DOI: 10.1093/forestry/cpx024View Article Google Scholar

Manokaran, N., LaFrankie, J.V. 1990 Stand structure of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia. J. Trop. For. Sci. 3(1): 14–24.

Misra, D. 2020. Mish: A self regularized non-monotonic neural activation function. In BMVC 2020. Virtual, pp. 1–14.

O’Brien, M.J., Hector, A., Kellenberger, R.T., Maycock, C.R., Ong, R., Philipson, C.D., Powers, J.S., Reynolds, G., Burslem, D.F.R.P. 2022 Demographic consequences of heterogeneity in conspecific density dependence among mast-fruiting tropical trees. Proc. R. Soc. B. 289(1977): 20220739.
DOI: 10.1098/rspb.2022.0739View Article Google Scholar

Parrotta, J., Yeo-Chang, Y., Camacho, L.D. 2016 Traditional knowledge for sustainable forest management and provision of ecosystem services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 12(1–2), 1–4.
DOI: 10.1080/21513732.2016.1169580View Article Google Scholar

Pau, S., Gillespie, W., Wolkovich, E.M. 2012 Dissecting NDVI–species richness relationships in Hawaiian dry forests. J. Biogeogr. 39(9): 1678–1686.
DOI: 10.1111/j.1365-2699.2012.02731.xView Article Google Scholar

Pearson, D.L., Carroll, S.S. 1998 Global patterns of species richness: spatial models for conservation planning using bioindicator and precipitation data. Conserv. Biol. 12(4): 809–821.
DOI: 10.1046/j.1523-1739.1998.96460.xView Article Google Scholar

Pimm, S.L., Raven, P. 2000 Extinction by numbers. Nature 403(6772): 843–845.
DOI: 10.1038/35002708View Article Google Scholar

Pool-Stanvliet, R., Stoll-Kleemann, S., Giliomee, J.H. 2018 Criteria for selection and evaluation of biosphere reserves in support of the UNESCO MAB programme in South Africa. Land Use Policy 76: 654–663.
DOI: 10.1016/j.landusepol.2018.02.047View Article Google Scholar

Quon, C., Lam, T.Y., Lin, H.-T. 2020 Designing cluster plots for sampling local plant species composition for biodiversity management. Forest Syst. 29(1): e002.
DOI: 10.5424/fs/2020291-15894View Article Google Scholar

Rocchini, D., Balkenhol, N., Carter, G.A., Foody, G.M., Gillespie, T.W., He, K.S., Kark, S., Levin, N., Lucas, K., Luoto, M., Nagendra, H., Oldeland, J., Ricotta, C., Southworth, J., Neteler, M. 2010 Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol. Inform. 5(5): 318–329.
DOI: 10.1016/j.ecoinf.2010.06.001View Article Google Scholar

Rocchini, D., Boyd, D.S., F?ret, J.-B., Foody, G.M., He, K.S., Lausch, A., Nagendra, H., Wegmann, M., Pettorelli, N. 2016 Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote. Sens. Ecol. Conserv. 2(1): 25–36.
DOI: 10.1002/rse2.9View Article Google Scholar

Rumelhart, D.E., Hinton, G.E., Williams, R.J. 1986 Learning representations by back-propagating errors. Nature 323(6088): 533–536.
DOI: 10.1038/323533a0View Article Google Scholar

Sample, V.A. 2005 Sustainable Forestry and Biodiversity Conservation. J. Sustain. Forest. 21(4): 137–150.
DOI: 10.1300/J091v21n04_09View Article Google Scholar

Seidler, T. G., Plotkin, J. B. 2006. Seed dispersal and spatial pattern in tropical trees. PLOS Biology 4(11 (e344)): 2132–2137.
DOI: 10.1371/journal.pbio.0040344View Article Google Scholar

Seymour, R.S., Hunter, Jr., M.L. 1992 New forestry in eastern spruce-fir forests: Principles and applications to Maine. Maine Agricultural and Forest Experiment Station Miscellaneous Publication 716, Maine Agricultural and Forest Experiment Station. Orono, Maine, USA, p. 36.

Shannon, C.E. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27(3): 379–423.
DOI: 10.1002/j.1538-7305.1948.tb01338.xView Article Google Scholar

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. 2014 Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56): 1929–1958.

Su, S.-H., Chang-Yang, C.-H., Lu, C.-L., Tsui, C.-C., Lin, T.-T., Lin, C.-L., Chiou, W.-L., Kuan, L.-H., Chen, Z.-S., Hsieh, C.-F. 2007 Fushan subtropical forest dynamics plot: tree species characteristics and distribution patterns. 1 edn. Taiwan Forestry Research Institute, 272 pp.

Thapa, B., Sinclair, F.L., Walker, D.H. 1995 Incorporation of indigenous knowledge and perspectives in agroforestry development. Agroforest Syst. 30(1): 249–261.
DOI: 10.1007/BF00708924View Article Google Scholar

Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J., Brotons, L. 2017 Integrating species distribution modelling into decision-making to inform conservation actions. Biodivers. Conserv. 26(2): 251–271.
DOI: 10.1007/s10531-016-1243-2View Article Google Scholar

Vincent, J.B., Henning, B., Saulei, S., Sosanika, G., Weiblen, G.D. 2015 Forest carbon in lowland Papua New Guinea: Local variation and the importance of small trees. Austral Ecol. 40(2): 151–159.
DOI: 10.1111/aec.12187View Article Google Scholar

Wilder, B.T., O’Meara, C., Monti, L., Nabhan, G.P. 2016 The importance of indigenous knowledge in curbing the loss of language and biodiversity. BioScience 66(6): 499–509.
DOI: 10.1093/biosci/biw026View Article Google Scholar

Winter, S., Chirici, G., McRoberts, R.E., Hauk, E., Tomppo, E. 2008 Possibilities for harmonizing national forest inventory data for use in forest biodiversity assessments. Forestry 81(1): 33–44.
DOI: 10.1093/forestry/cpm042View Article Google Scholar

Wohlgemuth, T., Nobis, M.P., Kienast, F., Plattner, M. 2008 Modelling vascular plant diversity at the landscape scale using systematic samples. J. Biogeogr. 35(7): 1226–1240.
DOI: 10.1111/j.1365-2699.2008.01884.xView Article Google Scholar

Yang, T.-R., Hsu, Y.-H., Kershaw, J. A., McGarrigle, E., Kilham, D. 2017 Big BAF sampling in mixed species forest structures of northeastern North America: influence of count and measure BAF under cost constraints. Forestry 90(5): 649–660.
DOI: 10.1093/forestry/cpx020View Article Google Scholar

Yang, T.-R., Lam, T.Y., Su, S.-H. 2019 A simulation study on the effects of plot size and shape on sampling plant species composition for biodiversity management. J. Sustain. Forest. 38(2): 116–129.
DOI: 10.1080/10549811.2018.1527233View Article Google Scholar

Zuleta, D., Russo, S.E., Barona, A., Barreto-Silva, J.S., Cardenas, D., Casta?o, N., Davies, S.J., Detto, M., Sua, S., Turner, B.L., Duque, A. 2020 Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant Soil 450(1): 133–149.
DOI: 10.1007/s11104-018-3878-0View Article Google Scholar