Research Paper

Soil nematode fauna in rice paddy fields from Taiwan based on morphology and DNA barcoding

Ming-Chung Chiu, Tang-Wei Lin, Zhao-Hui Lin, Li-Yen Lee, Po-Wei Hsu, Hsuan-Wien Chen

Published on: 06 September 2024

Page: 420 - 434

DOI: 10.6165/tai.2024.69.420

Abstract

Nematodes adapt to variety of environments. Dynamics of a nematode community are highly associated with the soil condition, which can serve as an indicator for monitoring the impact of human activity on the soil ecosystem. However, a systematic study on nematode fauna is lacking in many regions across Taiwan. In this study, we provide morphological and molecular identification for the soil nematodes collected during the cultivation process of the first crop rice in Chiayi, Taiwan. Within the three-year survey, 26 morphospecies of 18 genera were identified in the soil from the rice paddy fields. Each morphospeices was initially identified based on morphology, and 11 were further examined using 18S rDNA sequences. Among these, nine predominant morphospeices represented over 90% of the abundance, while juveniles of the plant pathogenetic nematode, Meloidogyne, were the most abundant one. Bacterivore was the most diverse and abundant functional group in the nematode community. Eight morphospecies were supported by the molecular identification at the genus level, while three require further consideration due to inconsistencies between morphological and molecular analyses.

Keyword: free-living nematode, functional group, molecular identification, morphological description, rice paddy field

Literature Cited

Ahmed, M., Sapp, M., Prior, T., Karssen, G., Back, M. 2015 Nematode taxonomy: from morphology to metabarcoding. Soil Discuss. 2: 1175–1220.
DOI: 10.5194/soild-2-1175-2015View Article Google Scholar

Ahmed, M., Back, M.A., Prior, T., Karssen, G., Lawson, R., Adams, I., Sapp, M. 2019 Metabarcoding of soil nematodes: the importance of taxonomic coverage and availability of reference sequences in choosing suitable marker(s). MBMG 3: e36408.
DOI: 10.3897/mbmg.3.36408View Article Google Scholar

Andriuzzi, W.S., Wall, D.H. 2018 Grazing and resource availability control soil nematode body size and abundance-mass relationship in semiarid grassland. J. Anim. Ecol. 87(5): 1407–1417.
DOI: 10.1111/1365-2656.12858View Article Google Scholar

Bambaradeniya, C.N.B., Amerasinghe, F.P. 2003 Biodiversity associated with the rice field agroecosystem in Asian countries: a brief review. Colombo, Sri Lanka: International Water Management Institute (IWMI). iii, 24p. (IWMI Working Paper 063)

Barker, K., Carter, C., Sasser, J. 1985 Nematode extraction and bioassays. In: Barker, K.R., Carter, C.C., Sasser, J.N. (eds.). An advanced treatise on Meloidogyne, vol. II Methodology. 19–35. State University Graphics, Raleigh, NC, North Carolina.

Blouin, M.S. 2002 Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int. J. Parasitol. 32(5): 527–531.
DOI: 10.1016/S0020-7519(01)00357-5View Article Google Scholar

Bongers, T. 1990 The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83(1): 14–19.
DOI: 10.1007/BF00324627View Article Google Scholar

Bongers, T., Bongers, M. 1998 Functional diversity of nematodes. Appl. Soil Ecol. 10(3): 239–251.
DOI: 10.1016/S0929-1393(98)00123-1View Article Google Scholar

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L. 2009 BLAST+: architecture and applications. BMC Bioinform. 10(1): 421.
DOI: 10.1186/1471-2105-10-421View Article Google Scholar

Chen, C. L., Chen, B. H., Huang, S. N., King, H. B., Sun, W. C., Guo, H. Y., Chien, C. C., Lin, R. H., Young, C. C., Chen, Z. S. 2009. Establishment and Perspectives of a Long Term Ecological Research in Agricultural Ecosystem in Subtropics. Crop, Environment & Bioinformatics 6(4): 233–246.
DOI: 10.30061/CEB.200912.0004View Article Google Scholar

Chen, J., Ferris, H. 1999 The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol. Biochem. 31(9): 1265–1279.
DOI: 10.1016/S0038-0717(99)00042-5View Article Google Scholar

Chen, Q., Yang, B., Liu, X., Chen, F., Ge, F. 2017 Long-term cultivation of Bt rice expressing the Cry1Ab/1Ac gene reduced phytoparasitic nematode abundance but did not affect other nematode parameters in paddy fields. Sci. Total Environ. 607-608: 463–474.
DOI: 10.1016/j.scitotenv.2017.06.225View Article Google Scholar

Chen, Y.F., Han, X.M., Li, Y. F., Hu, C. 2014 Approach of nematode fauna analysis indicate the structure and function of soil food web. Acta Ecol. Sin. 34(5): 1072–1084. [in Chineese with English abstract]
DOI: 10.5846/stxb201307021821View Article Google Scholar

De Ley, P. 2000 Lost in worm space: phylogeny and morphology as road maps to nematode diversity. Nematology 2(1): 9–16.de Miranda, M., Fonseca, M., Lima, A., de Moraes, T., Aparecido Rodrigues, F. 2015 Environmental impacts of rice cultivation. Am. J. Plant Sci. 6(12): 2009–2018.
DOI: 10.1163/156854100508854View Article Google Scholar

Edirisinghe, J.P., Bambaradeniy, C. 2006 Rice fields: an ecosystem rich in biodiversity. JNSF. 34(2): 57–59.
DOI: 10.4038/jnsfsr.v34i2.2084View Article Google Scholar

Ferris, H., Venette, R.C., van der Meulen H.R., Lau, S.S. 1998 Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203(2): 159–171.
DOI: 10.1023/A:1004318318307View Article

Ferris, H. 2010 Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 46(2): 97–104.
DOI: 10.1016/j.ejsobi.2010.01.003View Article Google Scholar

Ferris, H., Bongers, T., de Goede, R.G. M. 2001 A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18(1): 13–29.
DOI: 10.1016/S0929-1393(01)00152-4View Article Google Scholar

Gebremikael, M.T., Steel, H., Buchan, D., Bert, W., de Neve, S. 2016 Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci. Rep. 6(1): 32862.
DOI: 10.1038/srep32862View Article Google Scholar

George, P.B.L., Lindo, Z. 2015 Application of body size spectra to nematode trait-index analyses. Soil Biol. Biochem. 84: 15–20.
DOI: 10.1016/j.soilbio.2015.02.007View Article Google Scholar

Grove, D.I. 1990 A history of human helminthology. CAB International, Wallingford, UK. 848pp.

Ho, T.Y.A. 2011 Soil nematode abundance and diversity along an altitudinal gradient in Central Taiwan. [Unpublished master's thesis] Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. 34pp.

Hooper, D.J., Cowland, J.A. 1986 Fungal hosts for the chrysanthemum nematode, Aphelenchoides ritzemabosi. Plant Pathol. 35(1): 128–129.
DOI: 10.1111/j.1365-3059.1986.tb01992.xView Article Google Scholar

Ishibashi, N., Kondo, E., Ito, S. 1983 Effects of application of certain herbicides on soil nematodes and aquatic invertebrates in rice paddy fields in Japan. Crop Prot. 2(3): 289–304.
DOI: 10.1016/0261-2194(83)90003-0View Article Google Scholar

Islam, M.S., Ahmad, M.U., Haque, A.H.M.M., Sarker, M.E.H. 2004 Population dynamics of Hirschmanniella oryzae in the rice root of farmer fields as affected by edaphic factors. PJBS. 7(11): 2002–2004.
DOI: 10.3923/pjbs.2004.2002.2004View Article Google Scholar

Jatala, P. 1986 Biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 24(1): 453–489.
DOI: 10.1146/annurev.py.24.090186.002321View Article Google Scholar

Jhao, J.S. 2013 The effects of tillage and rotation on soil nematode community in different depth. [Unpublished master's thesis] Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. 60pp.

Kanwar, R.S., Patil, J.A., Yadav, S. 2021 Prospects of using predatory nematodes in biological control for plant parasitic nematodes–A review. Biol. Control. 160: 104668.
DOI: 10.1016/j.biocontrol.2021.104668View Article Google Scholar

Karssen, G., Groza, M. 2018 First report of the plant-parasitic nematode Aphelenchoides besseyi (Nematoda: Aphelenchoididae) on rice in Romania. Bulletin OEPP/EPPO Bulletin 48(2): 254–255.
DOI: 10.1111/epp.12467View Article Google Scholar

Kawanobe, M., Toyota, K., Ritz, K. 2021 Development and application of a DNA metabarcoding method for comprehensive analysis of soil nematode communities. Appl. Soil Ecol. 166: 103974.
DOI: 10.1016/j.apsoil.2021.103974View Article Google Scholar

Kaya, H.K., Gaugler, R. 1993 Entomopathogenic nematodes. Annu. Rev. Entomol. 38(1): 181–206.
DOI: 10.1146/annurev.en.38.010193.001145View Article Google Scholar

Kenmotsu, H., Ishikawa, M., Nitta, T., Hirose, Y., Eki, T. 2021 Distinct community structures of soil nematodes from three ecologically different sites revealed by high-throughput amplicon sequencing of four 18S ribosomal RNA gene regions. PLoS ONE 16(4): e0249571.
DOI: 10.1371/journal.pone.0249571View Article Google Scholar

Khan, Z., Kim, Y.H. 2007 A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl. Soil Ecol. 35(2): 370–379.
DOI: 10.1016/j.apsoil.2006.07.007View Article Google Scholar

Korobushkin, D.I., Butenko, K.O., Gongalsky, K.B., Saifutdinov, R.A., Zaitsev, A. S. 2019 Soil nematode communities in temperate rice-growing systems. European J. Soil Biol. 93: 103099.
DOI: 10.1016/j.ejsobi.2019.103099View Article Google Scholar

Liao, C.Y. 2012 Dynamics of Soil Nematode Communities under Conventional and Organic Tea Gardens in Central Taiwan. [Unpublished master's thesis] Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. 38pp.

Linford, M.B., Oliveira, J.M. 1937 The feeding of hollow-spear nematodes on other nematodes. Science 85(2203): 295–297.
DOI: 10.1126/science.85.2203.295View Article Google Scholar

Liu, M., Chen, X., Qin, J., Wang, D., Griffiths, B., Hu, F. 2008 A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Appl. Soil Ecol. 40(2): 250–259.
DOI: 10.1016/j.apsoil.2008.05.001View Article Google Scholar

Liu, T., Whalen, J.K., Shen, Q., Li, H. 2016a Increase in soil nematode abundance due to fertilization was consistent across moisture regimes in a paddy riceeupland wheatn system. Eur. J. Soil Biol. 72: 21–26.
DOI: 10.1016/j.ejsobi.2015.12.001View Article Google Scholar

Liu, T., Li, Y., Shen, Q., Li, H.X., Whalen, J. 2016b Soil nematode community response to fertilisation in the root-associated and bulk soils of a rice-wheat agroecosystem. Nematology 18(6): 727–741.
DOI: 10.1163/15685411-00002988View Article Google Scholar

Maharani, R., Indarti, S., Soffan, A., Hartono, S. 2023 Aphelenchoides varicaudatus (Nematoda: Aphelenchoididae) and Helicotylenchus erythrinae (Nematoda: Hoplolaimidae) from garlic plantation in Magelang, Central Java, Indonesia. Helminthologia 60(1): 94–105.
DOI: 10.2478/helm-2023-0007View Article Google Scholar

Mantelin, S., Bellafiore, S., Kyndt, T. 2017 Meloidogyne graminicola: a major threat to rice agriculture. Mol. Plant Pathol. 18(1): 3–15.
DOI: 10.1111/mpp.12394View Article Google Scholar

Maung, Z.T.Z., Win, P.P., Kyi, P.P., Myint, Y.Y., De Waele, D. 2013 Population dynamics of the rice root nematode Hirschmanniella oryzae on monsoon rice in Myanmar. Arch. Phytopathol. Pflanzenschutz 46(3): 348–356.
DOI: 10.1080/03235408.2012.740982View Article Google Scholar

Min, S., Rulik, M. 2020 Effects of different water management and fertilizer applications on CO2 fluxes from a selected Myanmar Rice (Oryza sativa L.) cultivar. Int. J. Plant Sci. 32(19): 22–37.
DOI: 10.9734/ijpss/2020/v32i1930394View Article Google Scholar

Namu, J., Karuri, H., Alakonya, A., Nyaga, J., Njeri, E. 2018 Distribution of parasitic nematodes in Kenyan rice fields and their relation to edaphic factors, rainfall and temperature. Trop. Plant Pathol. 43(2): 128–137.
DOI: 10.1007/s40858-017-0194-9View Article Google Scholar

Naumova, T.V., Gagarin, V.G. 2017 Tobrilus saprophagus sp. n. and Epitobrilus interstitialis sp. n. (Nematoda, Triplonchida) from Lake Baikal, Russia. Zootaxa 4353: 133–145.
DOI: 10.11646/zootaxa.4353.1.8View Article Google Scholar

Neher, D.A. 2001 Role of nematodes in soil health and their use as indicators. J. Nematol. 33: 161–168.

Okada, H., Niwa, S., Takemoto, S., Komatsuzaki, M., Hiroki, M. 2011 How different or similar are nematode communities between a paddy and an upland rice fields across a flooding–drainage cycle? Soil Biol. Biochem. 43: 2142–2151.
DOI: 10.1016/j.soilbio.2011.06.018View Article Google Scholar

Okada, H., Niwa, S., Hiroki, M. 2016 Nematode fauna of paddy field flooded all year round. Nematological Research 46: 65–70.
DOI: 10.3725/jjn.46.65View Article Google Scholar

Pant?, G., Pasotti, F., Macheriotou, L., Vanreusel, A. 2021 Combining traditional taxonomy and metabarcoding: Assemblage structure of nematodes in the shelf sediments of the eastern Antarctic Peninsula. Front. mar. sci. 8: 629706.
DOI: 10.3389/fmars.2021.629706View Article Google Scholar

Perret, S.R., Thanawong, K., Basset-Mens, C., Mungkung, R. 2013 The environmental impacts of lowland paddy rice: A case study comparison between rainfed and irrigated rice in Thailand. Cah. Agric. 22(5): 369–377.
DOI: 10.1684/agr.2013.0663View Article Google Scholar

Porazinska, D.L., Giblin-Davis, R.M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T.O., Tucker, A.E., Sung, W., Thomas, W.K. 2009 Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol. Ecol. Resour. 9(6): 1439–1450.
DOI: 10.1111/j.1755-0998.2009.02611.xView Article Google Scholar

Ryss, A.Y. 2017 A simple express technique to process nematodes for collection slide mounts. J. Nematol. 49(1): 27–32.
DOI: 10.21307/jofnem-2017-043View Article Google Scholar

S?nchez-Moreno, S., Cano, M., L?pez-P?rez, A., Benayas, J.M.R. 2018 Microfaunal soil food webs in Mediterranean semi-arid agroecosystems. Does organic management improve soil health? Appl. Soil Ecol. 125: 138–147.
DOI: 10.1016/j.apsoil.2017.12.020View Article Google Scholar

Schenk, J., Kleinb?lting, N., Traunspurger, W. 2019 Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities. Ecol. Evol. 10(6): 2885–2899.
DOI: 10.1002/ece3.6104View Article Google Scholar

Shafqat, S., Bilgrami, A.L., Jairajpuri, M.S. 1987 Evaluation of the predatory behaviour of Dorylaimus stagnalis Dujardin, 1845 (Nematoda: Dorylaimida). Revue de. N?matologie 10: 455–466.

Sikder, M.M., Vesterg?rd, M., Sapkota, R., Kyndt, T., Nicolaisen, M. 2020 Evaluation of metabarcoding primers for analysis of soil nematode communities. Diversity 12(10): 388.
DOI: 10.3390/d12100388View Article Google Scholar

Steel, H., Ferris, H. 2016 Soil nematode assemblages indicate the potential for biological regulation of pest species. Acta Oecol. 73: 87–96.
DOI: 10.1016/j.actao.2016.03.004View Article Google Scholar

Treonis, A.M., Unangst, S.K., Kepler, R.M., Buyer, J.S., Cavigelli, M.A., Mirsky, S.B., Maul, J.E. 2018 Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci. Rep. 8(1): 2004.
DOI: 10.1038/s41598-018-20366-5View Article Google Scholar

Van Nguyen, S., Nguyen, P.T.K., Araki, M., Perry, R.N., Tran, L.B., Chau, K.M., Min, Y.Y., Toyota, K. 2020 Effects of cropping systems and soil amendments on nematode community and its relationship with soil physicochemical properties in a paddy rice field in the Vietnamese Mekong Delta. Appl. Soil Ecol. 156: 103683.
DOI: 10.1016/j.apsoil.2020.103683View Article Google Scholar

Waeyenberge, L., de Sutter, N., Viaene, N., Haegeman, A. 2019 New insights into nematode DNA-metabarcoding as revealed by the characterization of artificial and spiked nematode communities. Diversity 11(4): 52.
DOI: 10.3390/d11040052View Article Google Scholar

Watanabe, T. 2018 Paddy fields as artificial and temporal wetland. Irrigation in Agroecosystems, Gabrijel Ondra?ek, IntechOpen.
DOI: 10.5772/intechopen.80581View Article Google Scholar

Win, P.P., Kyi, P.P., Maung, Z.T.Z., De Waele, D. 2013 Population dynamics of Meloidogyne graminicola and Hirschmanniella oryzae in a double rice-cropping sequence in the lowlands of Myanmar. Nematology 15(7): 795–807.
DOI: 10.1163/15685411-00002719View Article Google Scholar

Yang, B., Chen, Q., Liu, X., Chen, F., Liang, Y., Qiang, W., He, L., Ge, F. 2020 Effects of pest management practices on soil nematode abundance, diversity, metabolic footprint and community composition under paddy rice fields. Front. Plant Sci. 11: 88.
DOI: 10.3389/fpls.2020.00088View Article Google Scholar

Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W., Georgieva, S.S. 1993 Feeding habits in soil nematode families and genera-An outline for soil ecologists. J. Nematol. 25: 315–331.

Yin, W. 1992 Pictorical keys to soil animals of subtropical China. Sciences press, Beijing, China. 618pp. [in Chineese]

Yin, W. 1998 Pictorical keys to soil animals of China. Sciences press, Beijing, China. 757pp. [in Chineese]

Zhang, Z.Y., Zhang, X.K., Jhao, J.S., Zhang, X.P., Liang, W.J. 2015 Tillage and rotation effects on community composition and metabolic footprints of soil nematodes in a black soil. Eur. J. Soil Biol. 66: 40–48.
DOI: 10.1016/j.ejsobi.2014.11.006View Article Google Scholar

Zheng, F., Zhu, D., Giles, M., Daniell, T., Neilson, R., Zhu, Y.G., Yang, X.R. 2019 Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Sci. Total Environ. 680: 70–78.
DOI: 10.1016/j.scitotenv.2019.04.384View Article Google Scholar