Research Paper
Architectural modifications that allowed Thymus marschallianus to spread widely in Central and North Asia
Evgeniya B. Talovskaya, Vera A. Cheryomushkina, Alexey Yu. Astashenkov
Published on: 24 October 2024
Page: 497 - 505
DOI: 10.6165/tai.2024.69.497
Abstract
In the conditions of climate change, when some plant species are completely disappearing, and others are forced to adapt quickly, it becomes extremely important to find the main architectural characteristics that allow plants to spread to new territories. This study demonstrated the modifications of the architecture of Thymus marschallianus and its relationship with the environmental conditions of Central Asia (Kazakhstan and Kyrgyzstan) and North Asia (Russia). For the first time, we tried to combine architectural and eco-morphological approaches to studying plants, which allowed us to obtain the most complete information about the morphological mechanisms of plant adaptation. The diversity of shoots and categories of axes (monopodial system of shoots and sympodial axis) were identified. The variability of monopodial system of shoots and sympodial axis modify the architecture of T. marschallianus. We characterized three modifications of this architecture and established their relationship with specific habitats. We found out that the basitonic branching of the monopodial system of shoots determines life form (dwarf subshrub), and the growth direction of the sympodial axes determines growth form (prostate or erect). The differences in architecture, growth forms and quantitative characteristics of sympodial axes are related to environmental conditions, particularly the cover of herbaceous plants, dead grass, and stones, as well as topography. We propose that the morphological variability of T. marschallianus allowed this species to spread widely in the plains and mountains of Central and North Asia.
Keyword: Asia, life form, plant architecture, steppe habitat, Thymus marschallianus
Literature Cited
Abdusalam, A., Li, O. 2018 Morphological plasticity and adaptation level of distylous Primula nivalis in a heterogeneous alpine environment. Plant Divers. 40(6): 284–291.
DOI: 10.1016/j.pld.2018.11.003View Article
Google Scholar
Astashenkov, A. Yu., Godin, V. N., Cheryomushkina, V. A., Talovskaya, E. B. 2022 Analisis of functional traits and the structure of their relationships in the coenopopulations of Panzerina lanata (Lamiaceae). Botanicheskii Zhurnal. 107(6): 544–560.
Bartha, D. 2011 Architectural models and types of the woody plants in the Pannonian Basin. Acta Bot. Hungarica. 53(3-4): 215–224.
Barth?l?my, D. 2003 Botanical background for plant architecture analysis and modeling. In: Hu, B.-G., Jaeger, M. (eds.), Plant growth modeling and applications. The First International symposium on plant growth modeling, simulation, visualization and their applications. Tsinghua University Press, Beijing China, pp.1–20.
Barth?l?my, D., Caraglio, Y. 2007 Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99(3): 375–407.
Burns, K.C. 2019 Evolution in Isolation: the search for an island syndrome in plants. Cambridge University Press, Cambridge. 226pp. doi:10.1017/9781108379953
DOI: 10.1017/9781108379953View Article
Caraglio, Y., Pimont, F., Rigolot, E. 2007 Pinus halepensis Mill. architectural analysis for fuel modelling. In: Leone, V. Lovreglio, R. (eds.) Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems, ser. A., vol. 75. Ciheam, Bari, Italy, pp.43–59. http://om.ciheam.org/om/pdf/a75/00800314.pdf
Charles-Dominique, T., Edelin, C., Bouchard, A. 2010 Architectural strategies of Cornus sericea, a native but invasive shrub of Southern Quebec, Canada, under an open or a closed canopy. Ann. Bot. 105(2): 205–220.
DOI: 10.1093/aob/mcp273View Article
Google Scholar
Charles-Dominique, T., Edelin, C., Brisson, J., Bouchard, A. 2012. Architectural strategies of Rhamnus cathartica (Rhamnaceae) in relation to canopy openness. Botany 90(10): 976–989.
DOI: 10.1139/b2012-069View Article
Google Scholar
Cibanova, N.A. 1977 Life cycle and age structure of the coenopopulations of Thymus marschallianus Willd. (Lamiacea?) in the Northern steppe (Kursk region). Botanicheskii Zhurnal 6(1): 101–105.
Das, D.S., Rawat, D.S., Maity, D., Dash, S.S., Sinha, B.K. 2020 Species richness patterns of different life-forms along altitudinal gradients in the Great Himalayan National Park, Western Himalaya, India. Taiwania 65(2): 154–162.
DOI: 10.6165/tai.2020.65.154View Article
Google Scholar
Esau, K. 1977 Anatomy of seed plants, 2nd ed. Wiley, New York, USA. 550pp.
Frolov, P.V., Zubkova, E.V., Shanin, V.N., Bykhovets, S.S., M?kip??, R., and Salemaa, M. 2020 CAMPUS-S – The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen. II. Parameterization, validation and simulation experiments. Ecol. Model. 431: 109183.
DOI: 10.1016/j.ecolmodel.2020.109183View Article
Google Scholar
Gambino, S., F. Ratto, F., and Bartoli, A. 2016 Architecture of the genus Gutierrezia (Asteraceae: Astereae, Solidagininae). Bol. Soc. Argent. Bot. 51(4): 657–663.
Glantz, S.A. 1998 Primer of biostatistics (translated from English into Russian), 4th ed. Praktika Press, Moscow, Russia.
Grabherr, G. 2003 Alpine vegetation dynamics and climate change – a synthesis of long-term studies and observations. In: Grabherr, G. et al. (eds.), Alpine Biodiversity in Europe Vol. 167. Springer, Berlin, Heidelberg Germany, pp.399–409.
DOI: 10.1007/978-3-642-18967-8_24View Article
Google Scholar
Grime, J.P. 2006 Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons, UK.
Gogina, E.E. 1990 Variability and morphogenesis in the genus Thymus L. Nauka, Moscow, Russia. 208pp.
Guo, Y., Fourcaud, T., Jaeger, M., Zhang, X., Li, B. 2011 Plant growth and architectural modelling and its applications. Ann. Bot. 107(5): 723–727.
Hall?, F. 2004. Architectures de plantes. Francis. Publisher, Montpellier, France. 180pp.
Hall?, F., Oldeman, R.A.A., Tomlinson, P.B. 1978 Tropical trees and forests. An architectural analysis. Springer-Verlag Berlin, Heidelberg New York. 444pp.
IPCC. 2014 Climate Change 2014: Synthesis report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, Switzerland. Available from https://www.ipcc.ch/report/ ar5/
Irl, S.D.H., Obermeier, A., Beierkuhnlein, C., Steinbauer, M.J. 2020 Climate controls plant life-form patterns on a highelevation oceanic island. J. Biogeogr. 47(10): 2261–2273.
DOI: 10.1111/jbi.13929View Article
Google Scholar
Jalas, J. 1972 Thymus L. In: Tutin, T.G. et al. (eds.) Flora Europaea: Diapensiaceae to Myoporaceae. Vol. 3. Cambridge University Press, Cambridge, UK, pp.172–182.
Barth?l?my, D., Caraglio, Y. 2007 Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99(3): 375–407.
DOI: 10.1093/aob/mcl260View Article
Google Scholar
Klime?ov?, J., Mart?nkov?a J., Pausasc J.G., Moraesd M.G., Herbenb T., Yuf F.-H., Puntierih J., Veskj P.A., Belloa F., Jane?eka ?., Altmana J., Appezzato-da-Gl?riam B., Bartu?kov?a A., Crivellaron A., Dole?ala J., Ottp J. P., Paulaq S., Schnablov?e R., Schweingrubers F.H., Ottaviania G. 2019 Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics. 40: 125485.
DOI: 10.1016/j.ppees.2019.125485View Article
Google Scholar
Klokov, M.V. 1954 Genus 1299. Thyme – Thymus L. In: Schischkin, B.K. (ed.) Flora of the USSR. Vol. 21. Publishers of the Academy of Sciences of the USSR, Moscow & Leningrad, St. Petersburg, pp. 470–591.
Kolegova, E.B., Cheryomushkina, V.A., Makunina, N.I., Bystrushkin, A.G. 2013 Ontogenetic structure and status assessment of Thymus marschallianus (Lamiaceae) coenopopulations in South Ural and Altai. Rastitelnye Resursy 49(3): 341–352.
K?rner, C. 1992 Response of alpine vegetation to global climate change. Catena. Supp (Giessen) 22: 85–96.
Lalibert?, E. 2017 Below?ground frontiers in trait?based plant ecology. New Phytol. 213(4): 1597–1603.
DOI: 10.1111/nph.14247View Article
Google Scholar
Lavorel, S., Garnier, E. 2002 Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16(5): 545–556.
DOI: 10.1046/j.1365-2435.2002.00664.xView Article
Google Scholar
Millan, M., Rowe, N.P., Edelin, C. 2019 Deciphering the growth form variation of the Mediterranean chamaephyte Thymus vulgaris L. using architectural traits and their relations with different habitats. Flora 251: 1–10.
DOI: 10.1016/j.flora.2018.11.021View Article
Google Scholar
Nagy, L., Grabherr, G. 2009. The Biology of Alpine Habitats. Oxford University Press, Oxford. 336pp.
DOI: 10.1093/oso/9780198567035.002.0002View Article
Google Scholar
Navarro, T., Pascual, V., Cabezudo, B., Alados, C. 2009 Architecture and functional traits of semi-arid shrub species in Cabo de Gata Natural Park, SE Spain. Candollea 64: 69–84.
Orlovsky, N.S., Zonn, I.S., Kostianoy, A.G., Zhiltsov, S.S. 2019 Climate change and water resources in Central Asia. The Herald of the Diplomatic Academy of the MFA of Russia. Russia & World 1: 57–75.
Rabotnov, T.A. 1950 Life cycle of perennial grasses in meadow coenosises. In: Proceedings BIN AN SSSR., pp. 179–196.
Raunkiaer, C.C. 1934 The life-forms of plants and statistical plant geography: Being the collected papers of C. Raunkiaer. Clarendon Press, Oxford, U.K.
Serebryakov, I.G. 1959 Types of development of shoots in herbal perennial plants and their formation factors. Uchenye Zapiski Moskovskogo Gosudarstvennogo Pedagogicheskogo Instituta. Voprosy biologii rastenii. 100(5): 3–38.
Serebryakov, I.G. 1962 Ecological Morphology of Plant. Vyshaya Shk., Moscow, Russia. 378pp.
DOI: 10.12737/971374View Article
Serebryakov, I.G. 1964 Comparative analyses of some rhythm peculiarities of the seasonal development of plants in different botanic and geographic zones of the USSR. Bull. Mosc. Soc. Natur. Biol. Ser. 69(5): 62–75.
DOI: 10.35634/2412-9518-2023-33-1-49-57View Article
Google Scholar
Smirnova, O.V., Palenova, M.M., Komarov, A.S. 2002 Ontogeny of different life forms of plants and specific features of age and spatial structure of their populations. Russ J. Dev. Biol. 33(1): 1–10.
DOI: 10.1023/A:1013889926529View Article
Subedi, S.C., Ross, M.S., Sah, J.P., Redwine, J., Baraloto, C. 2019 Trait?based community assembly pattern along a forest succession gradient in a seasonally dry tropical forest. Ecosphere 10(4): e02719.
DOI: 10.1002/ecs2.2719View Article
Google Scholar
Talovskaya, E., Cheryomushkina, V. 2022 Morphological variations of Thymus L. in the vegetation belts of the Tien Shan mountains (Central Asia). Botany 100(6): 499–508.
DOI: 10.1139/cjb-2021-0101View Article
Google Scholar
Talovskaya, E.B., Cheryomushkina, V. A., Barsukova, I.N. 2020 Architecture of the dwarf shrub Thymus petraeus (Lamiaceae) in the conditions of Southern Siberia. Contemp. Probl. Ecol. 13(1): 85–94.
DOI: 10.1134/S1995425520010102View Article
Google Scholar
Uranov, A.A. 1975 The age spectrum of coenopopulations as a function of time and energy wave processes. Biol. Sci. 2: 7–34.
Vareschi, V. 1970 Flora de los P?ramos de Venezuela. Universidad de Los Andes, M?rida, Venezuela. 429pp.
Warming, E. 1909 Oecology of Plants. Clarendon Press, Oxford. 422pp.
DOI: 10.1002/9781394276691.ch13View Article
Google Scholar
Wilson, R.J., Gutierrez, D., Gutierrez, J., Martinez, D., Agudo, R., Monserrat, V.J. 2005 Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8(11): 1138–1146.
DOI: 10.1111/j.1461-0248.2005.00824.xView Article
Google Scholar