Special Issue

Effects of crop rotation and tillage on CO2 and CH4 fluxes in paddy fields

Ching-Wen Wang, Kuan-Hung Lin, Yi-Zhang Feng, Yung-Wei Lin, Zhi-Wer Yang, Chung-I Chen, Meng-Yuan Huang

Published on: 08 April 2025

Page: 512 - 520

DOI: 10.6165/tai.2025.70.512

Abstract

Rice is a staple food for much of the global population, but its traditional cultivation methods, particularly prolonged flooding, contribute to significant methane (CH₄) emissions. Introducing a rice-maize rotation system has the potential to reduce greenhouse gas (GHG) emissions. This study compared double-cropping rice fields with rice-maize rotation systems, with and without tillage, over two consecutive growing periods. The closed chamber method was employed to measure carbon dioxide (CO₂) and CH₄ fluxes in each field, assessing GHG emissions across different cropping systems. Results indicate that tillage is an effective management practice for reducing emissions in double-cropping rice systems. The total net carbon absorption (CO₂ + CH₄) over two periods ranked as follows: double-cropping rice in field A (AR1-AR2) at 4.93 t C/ha > rice-no-tilled maize in field B (BR1-BNTC2) at 3.46 t C/ha > rice-till maize in field B (BR1-BTC2) at 3.41 t C/ha > rice-no-till maize in field C (CR1-CNTC2) at 2.24 t C/ha > rice-tilled maize in field C (CR1-CTC2) at 1.79 t C/ha. The global warming potential (GWP) of the rice-maize rotation systems was notably lower than that of double-cropping rice, primarily due to the high CH₄ emissions from waterlogged conditions in control fields. Among treatments, the rice-no-till maize system exhibited the lowest GWP and greenhouse gas intensity (GHGI) while also achieving the highest crop yield, implying it the most environmentally and economically sustainable option.

Keyword: Greenhouse gas emissions, greenhouse gas intensity, global warming potential, climate-smart agriculture

Literature Cited

Abdalla, K., Chivenge, P., Ciais, P., Chaplot, V. 2016 No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: Results from a meta-analysis. Biogeosciences 13(12): 3619?3633.
DOI: 10.5194/bg-13-3619-2016View Article Google Scholar

Chapin, F.S., Woodwell, G.M., Randerson, J.T., et al. 2006 Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7): 1041?1050.
DOI: 10.1007/s10021-005-0105-7View Article Google Scholar

Chaplot, V., Abdalla, K., Alexis, M., Bourennane, H., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., Quenea, K., Thenga, H., Chivenge. P. 2015 Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ. 203: 110?118.
DOI: 10.1016/j.agee.2015.02.001View Article Google Scholar

Cha-un, N., Chidthaisong, A., Yagi, K., Sudo, S., Towprayoon, S. 2017 Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agric. Ecosyst. Environ. 237: 109?120.
DOI: 10.1016/j.agee.2016.12.025View Article Google Scholar

Datta, A., Rao, K.S., Santra, S.C., Mandal, T.K., Adhya, T.K. 2011 Greenhouse gas emissions from rice based cropping systems: Economic and technologic challenges and opportunities. Mitig. Adapt. Strateg. Glob. Chang. 16(5): 597?615.
DOI: 10.1007/s11027-011-9284-zView Article Google Scholar

FAO 2013a Climate-smart Agriculture: Sourcebook. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.

FAO 2013b FAOSTAT Statistical Database. Rome, FAO.

FAO 2016 Save and grow in practice: Maize, rice, wheat. A guide to sustainable cereal production. 124. Rome.

FAO 2019 Food and agriculture organization of the United Nations faostat. 403?403.

Follett, R.F., Mooney, S., Morgan, J.A., Paustian, K., Allen Jr, L.H., Archibeque, S., Del Grosso, S.J., Derner, J.D., Dijkstra, F., Franzluebbers, A.J., Kurkalova, L., Mccarl, B., Ogle, S., Parton, W., Petersen, J., G. Philip, R., Schoeneberger, M., West, T., Williams, J. 2011 Carbon sequestration and greenhouse gas fluxes in agriculture: Challenges and opportunities. Council for Agricultural Science and Technology Issue Paper 112.

Forte, A., Fiorentino, N., Fagnano, M., Fierro, A. 2017 Mitigation impact of minimum tillage on CO2 and N2O emissions from a mediterranean maize cropped soil under low-water input management. Soil Tillage Res. 166: 167?178.
DOI: 10.1016/j.still.2016.09.014View Article Google Scholar

He, Y., Lehndorff, E., Amelung, W., Wassmann, R., Alberto, M.C., von Unold, G., Siemens, J. 2017 Drainage and leaching losses of nitrogen and dissolved organic carbon after introducing maize into a continuous paddy-rice crop rotation. Agric. Ecosyst. Environ. 249: 91?100.
DOI: 10.1016/j.agee.2017.08.021View Article Google Scholar

Hou, R., Ouyang, Z., Wilson, G.V., Li, Y., Li, H. 2014 Response of carbon dioxide emissions to warming under no?till and conventional till systems. Soil Sci. Soc. Am. J. 78(1): 280?289.
DOI: 10.2136/sssaj2013.05.0184View Article Google Scholar

IPCC 2021 Climate change 2021: The physical science basis. In: Masson-Delmotte, V. et al. (eds.), Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2391, Vol. 2.

IPCC 2023 Climate change 2023: Synthesis report, summary for policymakers. In: Lee, H. et al. (eds.), Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Geneva, Switzerland.

Janz, B., Weller, S., Kraus, D., Racela, H. S., Wassmann, R., Butterbach-Bahl, K., Kiese, R. 2019 Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments. Agric Ecosyst Environ 270-271: 41?54.
DOI: 10.1016/j.agee.2018.10.011View Article Google Scholar

Jat, R.K., Singh, R.G., Kumar, M., Jat, M.L., Parihar, C.M., Bijarniya, D., Sutaliya, J.M., Jat, M.K., Parihar, M.D., Kakraliya, S.K., Gupta. R.K. 2019 Ten years of conservation agriculture in a rice–maize rotation of eastern gangetic plains of india: Yield trends, water productivity and economic profitability. Field Crop. Res. 232: 1?10.
DOI: 10.1016/j.fcr.2018.12.004View Article Google Scholar

Krauss, M., Ruser, R., M?ller, T., Hansen, S., M?der, P., Gattinger, A. 2017 Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley - winter wheat cropping sequence. Agric. Ecosyst. Environ. 239: 324?333.
DOI: 10.1016/j.agee.2017.01.029View Article Google Scholar

Lal, R. 2004 Soil carbon sequestration to mitigate climate change. Geoderma 123(1-2): 1?22.
DOI: 10.1016/j.geoderma.2004.01.032View Article Google Scholar

Lal, R. 2015 Sequestering carbon and increasing productivity by conservation agriculture. J Soil Water Conserv 70(3): 55A?62A.
DOI: 10.2489/jswc.70.3.55AView Article Google Scholar

Li, C., Zhang, Z., Guo, L., Cai, M., Cao, C. 2013 Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos. Environ. 80: 438?444.
DOI: 10.1016/j.atmosenv.2013.08.027View Article Google Scholar

Li, Z., Zhang, Q., Li, Z., Qiao, Y., Du, K., Yue, Z., Tian, C., Leng, P., Cheng, H., Chen, G., Li., F. 2023 Different responses of agroecosystem greenhouse gas emissions to tillage practices in a chinese wheat–maize cropping system. Carbon Res. 2(1): 7.
DOI: 10.1007/s44246-023-00042-8View Article Google Scholar

Linquist, B., Van Groenigen, K.J., Adviento?Borbe, M.A., Pittelkow, C., Van Kessel, C. 2012 An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18(1): 194?209.
DOI: 10.1111/j.1365-2486.2011.02502.xView Article Google Scholar

Lipper, L., Thornton, P., Campbell, B.M. Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., Sen, P.T., Sessa, R., Shula, R., Tibu, A., Torquebiau, E.F. 2014 Climate-smart agriculture for food security. Nat. Clim. Change 4(12): 1068–1072.
DOI: 10.1038/nclimate2437View Article Google Scholar

Mangalassery, S., Sj?gersten, S., Sparkes, D.L., Sturrock, C.J., Craigon, J., Mooney, S. J. 2014 To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci Rep 4(1): 4586.
DOI: 10.1038/srep04586View Article Google Scholar

Pao, S.H., Wu, H., Hsieh, H.L., Chen, C.P., Lin, H.J. 2025 Effects of modulating probiotics on greenhouse gas emissions and yield in rice paddies. Plant Soil Environ. 71: 21?35. doi: https://doi.org/10.17221/299/2024-PSE
DOI: 10.17221/21/2015-PSEView Article Google Scholar

Peterson, B.L., Hanna, L., Steiner, J.L. 2019 Reduced soil disturbance: Positive effects on greenhouse gas efflux and soil N losses in winter wheat systems of the southern plains. Soil Tillage Res. 191: 317?326.
DOI: 10.1016/j.still.2019.03.020View Article Google Scholar

Pryor, S.C., Barthelmie, R.J., Schoof, J.T. 2013 High-resolution projections of climate-related risks for the midwestern USA. Clim. Res. 56(1): 61?79.
DOI: 10.3354/cr01143View Article Google Scholar

Raihan, A., Tuspekova, A. 2022 Dynamic impacts of economic growth, renewable energy use, urbanization, industrialization, tourism, agriculture, and forests on carbon emissions in turkey. Carbon res. 1(1): 20.
DOI: 10.1007/s44246-022-00019-zView Article Google Scholar

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Gr?nwald, T., Havr?nkov?, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.?M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R. 2005 On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11(9): 1424?1439.
DOI: 10.1111/j.1365-2486.2005.001002.xView Article Google Scholar

Romasanta, R.R., Sander, B.O., Gaihre, Y.K., Alberto, M.C., Gummert, M., Quilty, J., Nguyen, V.H., Castalone, A.G., Balingbing, C., Sandro, J., Correa, T., Wassmann, R. 2017 How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agric Ecosyst Environ 239: 143?153.
DOI: 10.1016/j.agee.2016.12.042View Article Google Scholar

Shang, Q., Yang, X., Gao, C., Wu, P., Liu, J., Xu, Y., Shen, Q., Zou, J., Guo. S. 2011 Net annual global warming potential and greenhouse gas intensity in Chinese double rice?cropping systems: A 3?year field measurement in long?term fertilizer experiments. Glob. Change Biol. 17(6): 2196?2210.
DOI: 10.1111/j.1365-2486.2010.02374.xView Article Google Scholar

Smith, P., Reay, D., Smith., J. 2021 Agricultural methane emissions and the potential formitigation. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 379(2210): 20200451
DOI: 10.1098/rsta.2020.0451View Article Google Scholar

Stevens, C.J., Quinton, J.N. 2009 Policy implications of pollution swapping. Phys. Chem. Earth 34 (8-9): 589?594.
DOI: 10.1016/j.pce.2008.01.001View Article Google Scholar

Stewart, C.E., Follett, R.F., Pruessner, E.G., Varvel, G.E., Vogel, K.P., Mitchell, R.B. 2016 N fertilizer and harvest impacts on bioenergy crop contributions to soc. GCB Bioenergy 8(6): 1201?1211.
DOI: 10.1111/gcbb.12326View Article Google Scholar

Timsina, J., Jat, M.L., Majumdar, K. 2010 Rice-maize systems of south asia: Current status, future prospects and research priorities for nutrient management. Plant Soil 335(1-2): 65?82.
DOI: 10.1007/s11104-010-0418-yView Article Google Scholar

Valujeva, K., Pilecka-Ulcugaceva, J., Skiste, O., Liepa, S., Lagzdins, A., Grinfelde, I. 2022 Soil tillage and agricultural crops affect greenhouse gas emissions from cambic calcisol in a temperate climate. Acta Agric. Scand. Sect. B-Soil Plant Sci. 72(1): 835?846.
DOI: 10.1080/09064710.2022.2097123View Article Google Scholar

Wang, C., Lai, D.Y., Sardans, J., Wang, W., Zeng, C., Pe?uelas, J. 2017 Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PloS One 12(1): e0169254.
DOI: 10.1371/journal.pone.0169254View Article Google Scholar

Weller, S., Janz, B., J?rg, L., Kraus, D., Racela, H.S., Wassmann, R., Butterbach-Bahl, K., Kiese, R. 2016 Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Glob. Change Biol. 22(1): 432?448.
DOI: 10.1111/gcb.13099View Article Google Scholar

Weller, S., Kraus, D., Ayag, K.R.P., Wassmann, R., Alberto, M.C.R., Butterbach-Bahl, K., Kiese, R. 2015 Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 101(1): 37?53.
DOI: 10.1007/s10705-014-9658-1View Article Google Scholar

Yang, X., Xiong, J., Du, T., Ju, X., Gan, Y., Li, S., Xia, L., Shen, Y., Pacenka, S., Steenhuis, T.S., Siddique, K.H.M., Kang, S., Butterbach-Bahl, K. 2024 Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 15(1): 198.
DOI: 10.1038/s41467-023-44464-9View Article Google Scholar

Yang, Y., Huang, Q., Yu, H., Song, K., Ma, J., Xu, H., Zhang, G. 2018 Winter tillage with the incorporation of stubble reduces the net global warming potential and greenhouse gas intensity of double-cropping rice fields. Soil Tillage Res. 183: 19?27.
DOI: 10.1016/j.still.2018.05.005View Article Google Scholar

Zhao, X., Liu, S.L., Pu, C., Zhang, X.Q., Xue, J.F., Zhang, R., Wang, Y.Q., Lal, R., Zhang, H.L., Chen, F. 2016 Methane and nitrous oxide emissions under no?till farming in china: A meta?analysis. Glob. Change Biol. 22(4): 1372?1384.
DOI: 10.1111/gcb.13185View Article Google Scholar

Zhou, W., Lv, T.F., Chen, Y., Westby, A.P., Ren, W.J. 2014 Soil physicochemical and biological properties of paddy?upland rotation: A review. Sci. World J. 2014: 856352.
DOI: 10.1155/2014/856352View Article Google Scholar