Research Paper
Virtual species as baseline for predicting trends of real species distributions in mountainous regions
Chi-Cheng Liao, Huan-Yu Lin, Su-Wei Fan, Yi-Huey Chen
Published on: 04 October 2025
Page: 658 - 676
DOI: 10.6165/tai.2025.70.658
Abstract
Species distribution models (SDMs) play a crucial role in predicting species' geographic distributions, especially in mountainous regions where complex terrains pose significant challenges for sampling efforts. To enhance the accuracy of SDM predictions, researchers have employed high-resolution climate datasets derived from meteorological data. These datasets were used to simulate five virtual species across different climatic niches using principal components analysis (PCA). This approach allowed for a thorough examination of various environmental conditions, such as coastal, inland, and leeward slopes, thereby capturing the intricate climatic heterogeneity within mountainous landscapes. In these simulations, eleven algorithms were assessed using the Expected Fraction of Shared Presences (ESP), which measures the overlap between simulated suitable ranges and predicted potential ranges. Ensemble modeling proved superior, particularly when dealing with larger sample sizes, showing minimal impact from geographical distribution variations. However, smaller sample sizes notably reduced ESP values, geographical distance among sample points provide signals of niches that will be identified through accurate predictions of ensemble modeling. Temperature has been determined to be more critical than precipitation for species distribution, heavily influenced by elevation gradients. Climate change projections suggest that by the 2050s and 2090s, species currently found in inland areas or on leeward slopes may experience range expansions. Conversely, species inhabiting coastal areas or windward slopes are projected to face range restrictions or local extinctions. This study supports the development of targeted conservation strategies in topographically complex areas, offering scientific support for conservation planning in mountainous regions and forecasts of species distributions under future climate change.
Keyword: climate change, ensemble modeling, high-resolution climate data, species distribution model, virtual species
Literature Cited
Ackerly, D.D., Kling, M.M., Clark, M.L., Papper, P., Oldfather, M.F., Flint, A.L., Flint, L.E. 2020 Topoclimates, refugia, and biotic responses to climate change. Front. Ecol. Environ. 18(5): 288?297.
DOI: 10.1002/fee.2204View Article
Google Scholar
Ali, F., Khan, N., Khan, A.M., Ali, K., Abbas, F. 2023 Species distribution modelling of Monotheca buxifolia (Falc.) A. DC.: Present distribution and impacts of potential climate change. Heliyon. 9(2): e13417.
DOI: 10.1016/j.heliyon.2023.e13417View Article
Google Scholar
Ara?jo, M.B., New, M. 2007 Ensemble forecasting of species distributions. Trends Ecol. Evol. 22(1): 42?47.
DOI: 10.1016/j.tree.2006.09.010View Article
Google Scholar
Austin, M. 2007 Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Model. 200(1-2): 1?19.
DOI: 10.1016/j.ecolmodel.2006.07.005View Article
Google Scholar
Austin, M., Belbin, L., Meyers, J.a.A., Doherty, M., Luoto, M. 2006 Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199(2): 197?216.
DOI: 10.1016/j.ecolmodel.2006.05.023View Article
Google Scholar
Bean, W.T., Stafford, R., Brashares, J.S. 2012 The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35(3): 250?258.
DOI: 10.1111/j.1600-0587.2011.06545.xView Article
Google Scholar
Bombi, P., D’Amen, M. 2012 Scaling down distribution maps from atlas data: a test of different approaches with virtual species. J. Biogeogr. 39(4): 640?651.
DOI: 10.1111/j.1365-2699.2011.02627.xView Article
Google Scholar
Breiman, L. 2001 Random forests. Mach. Learn. 45(1): 5?32.
DOI: 10.1023/A:1010933404324View Article
Breiman, L., Friedman, J., Olshen, R.A., Stone, C. J. 2017 Classification and Regression Trees. Chapman and Hall/CRC.
DOI: 10.1201/9781315139470-8View Article
Google Scholar
Busby, J.R. 1991 BIOCLIM-a bioclimate analysis and prediction system. In: Margules, C.R., Austin, M.P., Eds., Nature Conservation: Cost Effective Biological Surveys and Data Analysis, CSIRO, Canberra, 64?68.
Chambers, D., P?ri?, C., Casajus, N., de Blois, S. 2013 Challenges in modelling the abundance of 105 tree species in eastern North America using climate, edaphic, and topographic variables. For. Ecol. Manage. 291: 20?29.
DOI: 10.1016/j.foreco.2012.10.046View Article
Google Scholar
Chambers, J., Hastie, T. 1992 Linear models. Chapter 4 of statistical models in S. Wadsworth & Brooks/Cole.
Chen, T., Guestrin, C. 2016 Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp. 785?794.
DOI: 10.1145/2939672.2939785View Article
Google Scholar
Chen, W.K., Tsai, C.Y. 1983 The climate of Yangmingshan National Park. Yangmingshan National Park, Construction and Planning Agency Ministry of the Interior, Executive Yuan, Taipei, Taiwan.
Cutler, D.R., Edwards Jr, T.C., Beard, K.H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J.J. 2007 Random forests for classification in ecology. Ecology 88(11): 2783?2792.
DOI: 10.1890/07-0539.1View Article
Google Scholar
De Marco, P., N?brega, C.C. 2018 Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PloS one. 13(9): e0202403.
DOI: 10.1371/journal.pone.0202403View Article
Google Scholar
De'ath, G., Fabricius, K.E. 2000 Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11): 3178?3192.
DOI: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2View Article
Google Scholar
Dobrowski, S.Z. 2011 A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biol. 17(2): 1022?1035.
DOI: 10.1111/j.1365-2486.2010.02263.xView Article
Google Scholar
Duan, R.Y., Kong, X.Q., Huang, M.Y., Wu, G.L., Wang, Z.G. 2015 SDMvspecies: a software for creating virtual species for species distribution modelling. Ecography 38(1): 108?110.
DOI: 10.1111/ecog.01080View Article
Google Scholar
Dunne, J.P., Horowitz, L., Adcroft, A., Ginoux, P., Held, I., John, J., Krasting, J.P., Malyshev, S., Naik, V., Paulot, F. Shevliakova ,E., Stock, C.A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K.A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P.P.G., Griffies, S.M., Guo, H., Hallberg, R.W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P.C.D., Nikonov, S., Paynter, D.J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B.G., Robinson, T., Schwarzkopf, D.M., Sentman, L.T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A.T., Wyman, B., Zeng, Y., Zhao, M. 2020 The GFDL Earth System Model version 4.1 (GFDL?ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Sy. 12(11): e2019MS002015.
DOI: 10.1029/2019MS002015View Article
Google Scholar
El?Gabbas, A., Dormann, C.F. 2018 Wrong, but useful: regional species distribution models may not be improved by range?wide data under biased sampling. Ecol. Evol. 8(4): 2196?2206.
DOI: 10.1002/ece3.3834View Article
Google Scholar
Elith, J., Leathwick, J.R., Hastie, T. 2008 A working guide to boosted regression trees. J. Anim. Ecol. 77(4): 802?813.
DOI: 10.1111/j.1365-2656.2008.01390.xView Article
Google Scholar
Elith, J., Phillips, S.J., Hastie, T., Dud?k, M., Chee, Y.E., Yates, C.J. 2011 A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1): 43?57.
DOI: 10.1111/j.1472-4642.2010.00725.xView Article
Google Scholar
Fick, S.E., Hijmans, R.J. 2017 WorldClim 2: new 1?km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12): 4302?4315.
DOI: 10.1002/joc.5086View Article
Google Scholar
Fois, M., Fenu, G., Lombrana, A.C., Cogoni, D., Bacchetta, G. 2015 A practical method to speed up the discovery of unknown populations using Species Distribution Models. J. Nat. Conserv. 24: 42?48.
DOI: 10.1016/j.jnc.2015.02.001View Article
Google Scholar
Friedman, J.H. 1991 Multivariate adaptive regression splines. Ann. Stat. 19(1): 1?67.
DOI: 10.1214/aos/1176347973View Article
Google Scholar
Friedman, J.H. 2001 Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5): 1189?1232.
DOI: 10.1214/aos/1013203451View Article
Google Scholar
Godsoe, W. 2014 Inferring the similarity of species distributions using Species’ Distribution Models. Ecography 37(2): 130?136.
DOI: 10.1111/j.1600-0587.2013.00403.xView Article
Google Scholar
Guillera?Arroita, G., Lahoz?Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R., Wintle, B.A. 2015 Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecol. Biogeogr. 24(3): 276?292.
DOI: 10.1111/geb.12268View Article
Google Scholar
Guisan, A., Edwards Jr, T.C., Hastie, T. 2002 Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157(2-3): 89?100.
DOI: 10.1016/S0304-3800(02)00204-1View Article
Google Scholar
Guisan, A., Zimmermann, N.E., Elith, J., Graham, C.H., Phillips, S., Peterson, A.T. 2007 What matters for predicting the occurrences of trees: techniques, data, or species characteristics? Ecol. Monogr. 77(4): 615?630.
DOI: 10.1890/06-1060.1View Article
Google Scholar
Hama, A.A., Khwarahm, N.R. 2023 Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: Range overlap and implications for conservation. Ecol. Inform. 73: 101930.
DOI: 10.1016/j.ecoinf.2022.101930View Article
Google Scholar
HamadAmin, B.A., Khwarahm, N.R. 2023 Mapping impacts of climate change on the distributions of two endemic tree species under Socioeconomic Pathway Scenarios (SSP). Sustainability 15(6): 5469.
DOI: 10.3390/su15065469View Article
Google Scholar
Hastie, T., Tibshirani, R. 1990 Exploring the nature of covariate effects in the proportional hazards model. Biometrics 46(4):1005?1016.
DOI: 10.2307/2532444View Article
Google Scholar
Hastie, T., Tibshirani, R., Buja, A. 1994 Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 89(428): 1255?1270.
DOI: 10.1080/01621459.1994.10476866View Article
Google Scholar
Hirzel, A.H., Helfer, V., Metral, F. 2001 Assessing habitat-suitability models with a virtual species. Ecol. Model. 145(2-3): 111?121.
DOI: 10.1016/S0304-3800(01)00396-9View Article
Google Scholar
Hsieh, C.F., Chao, W.C., Liao, C.C., Yang, K.C., Hsieh, T.H. 1997 Floristic composition of the evergreen broad-leaved forests of Taiwan. Nat. Hist. Res. 4: 1?16.
Huang, M., Kong, X., Varela, S., Duan, R. 2016 The Niche Limitation Method (NicheLim), a new algorithm for generating virtual species to study biogeography. Ecol. Model. 320: 197?202.
DOI: 10.1016/j.ecolmodel.2015.10.003View Article
Google Scholar
Hutchinson, G.E. 1957 Concluding remarks. - Cold Spring. Harb. Symp. 22: 415?427.
DOI: 10.1101/SQB.1957.022.01.039View Article
Google Scholar
Inman, R., Franklin, J., Esque, T., Nussear, K. 2021 Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere 12(3): e03422.
IPCC 2013 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC 2022 Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Shukla, P.R., Skea, J., Slade, R., Khourdajie, A.A., Diemen, R. v., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., Malley, J. (eds.) Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
IUCN 2014 Red List of Ecosystems Workshop Report. Cambridge, United Kingdom, 22–23 January 2014. Commission on Ecosystem Management and Species Survival Commission, International Union for Conservation of Nature, Gland.
Jakeman, A.J., Elsawah, S., Wang, H.-H., Hamilton, S.H., Melsen, L., Grimm, V. 2024 Towards normalizing good practice across the whole modeling cycle: its instrumentation and future research topics. SESMO. 6: 18755?18755.
DOI: 10.18174/sesmo.18755View Article
Google Scholar
Jiang, R., Zou, M., Qin, Y., Tan, G., Huang, S., Quan, H., Zhou, J., Liao, H. 2022 Modeling of the potential geographical distribution of three Fritillaria species under climate change. Front. Plant Sci. 12: 749838.
DOI: 10.3389/fpls.2021.749838View Article
Google Scholar
Journ?, V., Barnagaud, J.Y., Bernard, C., Crochet, P.A., Morin, X. 2020 Correlative climatic niche models predict real and virtual species distributions equally well. Ecology. 101(1): e02912.
DOI: 10.1002/ecy.2912View Article
Google Scholar
Kadmon, R., Farber, O., Danin, A. 2003 A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13(3): 853?867.
DOI: 10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2View Article
Google Scholar
Karger, D. N., Conrad, O., B?hner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M. 2017 Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 4(1): 170122.
DOI: 10.1038/sdata.2017.122View Article
Google Scholar
Kataoka, T., Tatebe, H., Koyama, H., Mochizuki, T., Ogochi, K., Naoe, H., Imada, Y., Shiogama, H., Kimoto, M., Watanabe, M. 2020 Seasonal to decadal predictions with MIROC6: Description and basic evaluation. J. Adv. Model. Earth Sy. 12(12): e2019MS002035.
DOI: 10.1029/2019MS002035View Article
Google Scholar
Kebede, A.S., Nicholls, R.J., Allan, A., Arto, I., Cazcarro, I., Fernandes, J.A., Hill, C.T., Hutton, C.W., Kay, S., L?z?r, A.N. 2018 Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Sci. Total Environ. 635: 659?672.
DOI: 10.1016/j.scitotenv.2018.03.368View Article
Google Scholar
Khan, S., Verma, S. 2022 Ensemble modeling to predict the impact of future climate change on the global distribution of Olea europaea subsp. cuspidata. Front. For. Glob. Change. 5: 977691.
DOI: 10.3389/ffgc.2022.977691View Article
Google Scholar
Lannuzel, G., Balmot, J., Dubos, N., Thibault, M., Fogliani, B. 2021 High-resolution topographic variables accurately predict the distribution of rare plant species for conservation area selection in a narrow-endemism hotspot in New Caledonia. Biodivers. Conserv. 30(4): 963?990.
DOI: 10.1007/s10531-021-02126-6View Article
Google Scholar
Laskey, H., Crook, E.D., Kimball, S. 2020 Analysis of rare plant occurrence data for monitoring prioritization. Diversity 12(11): 427.
DOI: 10.3390/d12110427View Article
Google Scholar
Leathwick, J. R., Elith, J., Hastie, T. 2006 Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 199(2): 188?196.
DOI: 10.1016/j.ecolmodel.2006.05.022View Article
Google Scholar
Lek, S., Gu?gan, J.-F. 1999 Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120(2-3): 65?73.
DOI: 10.1016/S0304-3800(99)00092-7View Article
Google Scholar
Leroy, B., Meynard, C.N., Bellard, C., Courchamp, F. 2016 virtualspecies, an R package to generate virtual species distributions. Ecography 39(6): 599?607.
DOI: 10.1111/ecog.01388View Article
Google Scholar
Li, C.F., Chytr?, M., Zelen?, D., Chen, M.Y., Chen, T.Y., Chiou, C.R., Hsia, Y.J., Liu, H.Y., Yang, S.Z., Yeh, C.L. 2013 Classification of Taiwan forest vegetation. Appl. Veg. Sci. 16(4): 698?719.
DOI: 10.1111/avsc.12025View Article
Google Scholar
Liao, C.C., Chang, C.R., Hsu, M.T., Poo, W.K. 2014 Experimental evaluation of the sustainability of dwarf bamboo (Pseudosasa usawai) sprout-harvesting practices in Yangminshan National Park, Taiwan. Environ. Manage. 54: 320?330.
DOI: 10.1007/s00267-014-0296-9View Article
Google Scholar
Liao, C.C., Chen, Y.H. 2021 Improving performance of species distribution model in mountainous areas with complex topography. Ecol. Res. 36(4): 648?662.
DOI: 10.1111/1440-1703.12227View Article
Google Scholar
Liao, C.C., Chen, Y.H. 2022 The effects of true and pseudo-absence data on the performance of species distribution models at landscape scale. Taiwania 67(1): 9?20.
DOI: 10.6165/tai.2022.67.9View Article
Google Scholar
Liao, C.C., Kuo, S.C., Chang, C.R. 2012 Forest distribution on small isolated hills and implications on woody plant distribution under threats of global warming. Taiwania 57(3): 242?250.
DOI: 10.6165/tai.2012.57(3).242View Article
Google Scholar
Liao, C.C., Lin, H.Y., Fan, S.W. 2023 A statistical method to generate high-resolution climate datasets for modeling plant distribution range and range shifts under climate change in mountainous areas. Taiwania 68(1): 8?22.
DOI: 10.6165/tai.2023.68.8View Article
Google Scholar
Lobo, J.M., Jim?nez?Valverde, A., Real, R. 2008 AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17(2): 145?151.
DOI: 10.1111/j.1466-8238.2007.00358.xView Article
Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W. 2009 Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15(1): 59?69.
DOI: 10.1111/j.1472-4642.2008.00491.xView Article
Google Scholar
McCullagh, P. 2019 Generalized Linear Models. Routledge.
Meucci, A., Young, I.R., Hemer, M., Trenham, C., Watterson, I. G. 2023 140 years of global ocean wind-wave climate derived from CMIP6 ACCESS-CM2 and EC-Earth3 GCMs: Global trends, regional changes, and future projections. J. Clim. 36(6): 1605?1631.
DOI: 10.1175/JCLI-D-21-0929.1View Article
Google Scholar
Meynard, C.N., Kaplan, D.M. 2013 Using virtual species to study species distributions and model performance. J. Biogeogr. 40(1): 1?8.
DOI: 10.1111/jbi.12006View Article
Google Scholar
Meynard, C.N., Leroy, B., Kaplan, D.M. 2019 Testing methods in species distribution modelling using virtual species: what have we learnt and what are we missing? Ecography 42(12): 2021?2036.
DOI: 10.1111/ecog.04385View Article
Google Scholar
Ning, H., Ling, L., Sun, X., Kang, X., Chen, H. 2021 Predicting the future redistribution of Chinese white pine Pinus armandii Franch. under climate change scenarios in China using species distribution models. Glob. Ecol. Conserv. 25: e01420.
DOI: 10.1016/j.gecco.2020.e01420View Article
Google Scholar
Nix, H.A. 1986 A biogeographic analysis of Australian elapid snakes. Atlas of elapid snakes of Australia. 7: 4?15.
Olden, J.D., Jackson, D. A. 2002 Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154(1-2): 135?150.
DOI: 10.1016/S0304-3800(02)00064-9View Article
Google Scholar
Pedersen, J.S.T., Santos, F.D., van Vuuren, D., Gupta, J., Coelho, R.E., Apar?cio, B.A., Swart, R. 2021 An assessment of the performance of scenarios against historical global emissions for IPCC reports. Global Environ. Change. 66: 102199.
DOI: 10.1016/j.gloenvcha.2020.102199View Article
Google Scholar
Peterson, A.T., Sober?n, J., Pearson, R.G., Anderson, R.P., Mart?nez-Meyer, E., Nakamura, M., Ara?jo, M.B. 2011 Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press.
Phillips, S.J., Anderson, R. P., Schapire, R. E. 2006 Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4): 231?259.
DOI: 10.1016/j.ecolmodel.2005.03.026View Article
Google Scholar
Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A., Randin, C. 2014 Very high resolution environmental predictors in species distribution models: Moving beyond topography? Prog. Phys. Geogr. 38(1): 79?96.
DOI: 10.1177/0309133313512667View Article
Google Scholar
Pu, Y., Liu, H., Yan, R., Yang, H., Xia, K., Li, Y., Dong, L., Li, L., Wang, H., Nie, Y. 2020 CAS FGOALS-g3 model datasets for the CMIP6 scenario model intercomparison project (ScenarioMIP). Adv. Atmos. Sci. 37(10): 1081?1092.
DOI: 10.1007/s00376-020-2032-0View Article
Google Scholar
Qazi, A.W., Saqib, Z., Zaman-ul-Haq, M. 2022 Trends in species distribution modelling in context of rare and endemic plants: a systematic review. Ecol. Process. 11(1): 1?11.
DOI: 10.1186/s13717-022-00384-yView Article
Google Scholar
Qiao, H., Feng, X., Escobar, L.E., Peterson, A.T., Sober?n, J., Zhu, G., Pape?, M. 2019 An evaluation of transferability of ecological niche models. Ecography 42(3): 521?534.
DOI: 10.1111/ecog.03986View Article
Google Scholar
Qiao, H., Peterson, A.T., Campbell, L.P., Sober?n, J., Ji, L., Escobar, L.E. 2016 NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39(8): 805?813.
DOI: 10.1111/ecog.01961View Article
Google Scholar
Santini, L., Ben?tez?L?pez, A., Maiorano, L., ?engi?, M. and Huijbregts, M.A. 2021 Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27(6): 1035?1050.
DOI: 10.1111/ddi.13252View Article
Google Scholar
Sillero, N., Barbosa, A.M. 2021 Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35(2): 213?226.
DOI: 10.1080/13658816.2020.1798968View Article
Google Scholar
Su, H.J. 1984 Studies on the climate and vegetation types of the natural forests in Taiwan (II) Altitudinal vegetation zones in relation to temperature gradient. Q. J. Chin. Forestry 17: 57?73.
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M.D., Thuiller, C.W. 2016 Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework.
Valavi, R., Guillera?Arroita, G., Lahoz?Monfort, J.J., Elith, J. 2022 Predictive performance of presence?only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92(1): e01486.
DOI: 10.1002/ecm.1486View Article
Google Scholar
Wan, J.-N., Mbari, N. J., Wang, S.-W., Liu, B., Mwangi, B. N., Rasoarahona, J.R., Xin, H.-P., Zhou, Y.-D., Wang, Q.-F. 2021. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 43(2): 117?124.
DOI: 10.1016/j.pld.2020.07.001View Article
Google Scholar
Wang, T., Wang, G., Innes, J., Nitschke, C., Kang, H. 2016 Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia–Pacific region. For. Ecol. Manage. 360: 357?366.
DOI: 10.1016/j.foreco.2015.08.004View Article
Google Scholar
Wang, Y.C., Hsu, H.H., Chen, C.A., Tseng, W.L., Hsu, P.C., Lin, C.W., Chen, Y.L., Jiang, L.C., Lee, Y.C., Liang, H. C. 2021 Performance of the Taiwan earth system model in simulating climate variability compared with observations and CMIP6 model simulations. J. Adv. Model. Earth Sy. 13(7): e2020MS002353.
DOI: 10.1029/2020MS002353View Article
Google Scholar
Wood, S.N. 2017 Generalized Additive Models: An introduction with R. chapman and hall/CRC.
Xu, Y., Huang, Y., Zhao, H., Yang, M., Zhuang, Y., Ye, X. 2021 Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests. 12(4): 429.
DOI: 10.3390/f12040429View Article
Google Scholar
Yin, Y., He, Q., Pan, X., Liu, Q., Wu, Y. and Li, X. 2022. Predicting current potential distribution and the range dynamics of Pomacea canaliculata in China under global climate change. Biology 11(1): 110.
DOI: 10.3390/biology11010110View Article
Google Scholar
Zhu, Y., Wei, W., Li, H., Wang, B., Yang, X., Liu, Y. 2018 Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Glob. Ecol. Conserv. 16: e00501.
DOI: 10.1016/j.gecco.2018.e00501View Article
Google Scholar
Zimmer, S.N., Holsinger, K.W., Dawson, C.A. 2023 A field?validated ensemble species distribution model of Eriogonum pelinophilum, an endangered subshrub in Colorado, USA. Ecol. Evol. 13(12): e10816.
DOI: 10.1002/ece3.10816View Article
Google Scholar
Zurell, D., Fritz, S. A., R?nnfeldt, A., Steinbauer, M.J. 2023 Predicting extinctions with species distribution models. Cambridge Prisms: Extinction. 1: e8.
DOI: 10.1017/ext.2023.5View Article
Google Scholar
Ackerly, D.D., Kling, M.M., Clark, M.L., Papper, P., Oldfather, M.F., Flint, A.L., Flint, L.E. 2020 Topoclimates, refugia, and biotic responses to climate change. Front. Ecol. Environ. 18(5): 288?297.
DOI: 10.1002/fee.2204View Article
Google Scholar
Ali, F., Khan, N., Khan, A.M., Ali, K., Abbas, F. 2023 Species distribution modelling of Monotheca buxifolia (Falc.) A. DC.: Present distribution and impacts of potential climate change. Heliyon. 9(2): e13417.
DOI: 10.1016/j.heliyon.2023.e13417View Article
Google Scholar
Ara?jo, M.B., New, M. 2007 Ensemble forecasting of species distributions. Trends Ecol. Evol. 22(1): 42?47.
DOI: 10.1016/j.tree.2006.09.010View Article
Google Scholar
Austin, M. 2007 Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Model. 200(1-2): 1?19.
DOI: 10.1016/j.ecolmodel.2006.07.005View Article
Google Scholar
Austin, M., Belbin, L., Meyers, J.a.A., Doherty, M., Luoto, M. 2006 Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199(2): 197?216.
DOI: 10.1016/j.ecolmodel.2006.05.023View Article
Google Scholar
Bean, W.T., Stafford, R., Brashares, J.S. 2012 The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35(3): 250?258.
DOI: 10.1111/j.1600-0587.2011.06545.xView Article
Google Scholar
Bombi, P., D’Amen, M. 2012 Scaling down distribution maps from atlas data: a test of different approaches with virtual species. J. Biogeogr. 39(4): 640?651.
DOI: 10.1111/j.1365-2699.2011.02627.xView Article
Google Scholar
Breiman, L. 2001 Random forests. Mach. Learn. 45(1): 5?32.
DOI: 10.1023/A:1010933404324View Article
Breiman, L., Friedman, J., Olshen, R.A., Stone, C. J. 2017 Classification and Regression Trees. Chapman and Hall/CRC.
DOI: 10.1201/9781315139470-8View Article
Google Scholar
Busby, J.R. 1991 BIOCLIM-a bioclimate analysis and prediction system. In: Margules, C.R., Austin, M.P., Eds., Nature Conservation: Cost Effective Biological Surveys and Data Analysis, CSIRO, Canberra, 64?68.
Chambers, D., P?ri?, C., Casajus, N., de Blois, S. 2013 Challenges in modelling the abundance of 105 tree species in eastern North America using climate, edaphic, and topographic variables. For. Ecol. Manage. 291: 20?29.
DOI: 10.1016/j.foreco.2012.10.046View Article
Google Scholar
Chambers, J., Hastie, T. 1992 Linear models. Chapter 4 of statistical models in S. Wadsworth & Brooks/Cole.
Chen, T., Guestrin, C. 2016 Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp. 785?794.
DOI: 10.1145/2939672.2939785View Article
Google Scholar
Chen, W.K., Tsai, C.Y. 1983 The climate of Yangmingshan National Park. Yangmingshan National Park, Construction and Planning Agency Ministry of the Interior, Executive Yuan, Taipei, Taiwan.
Cutler, D.R., Edwards Jr, T.C., Beard, K.H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J.J. 2007 Random forests for classification in ecology. Ecology 88(11): 2783?2792.
DOI: 10.1890/07-0539.1View Article
Google Scholar
De Marco, P., N?brega, C.C. 2018 Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PloS one. 13(9): e0202403.
DOI: 10.1371/journal.pone.0202403View Article
Google Scholar
De'ath, G., Fabricius, K.E. 2000 Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11): 3178?3192.
DOI: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2View Article
Google Scholar
Dobrowski, S.Z. 2011 A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biol. 17(2): 1022?1035.
DOI: 10.1111/j.1365-2486.2010.02263.xView Article
Google Scholar
Duan, R.Y., Kong, X.Q., Huang, M.Y., Wu, G.L., Wang, Z.G. 2015 SDMvspecies: a software for creating virtual species for species distribution modelling. Ecography 38(1): 108?110.
DOI: 10.1111/ecog.01080View Article
Google Scholar
Dunne, J.P., Horowitz, L., Adcroft, A., Ginoux, P., Held, I., John, J., Krasting, J.P., Malyshev, S., Naik, V., Paulot, F. Shevliakova ,E., Stock, C.A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K.A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P.P.G., Griffies, S.M., Guo, H., Hallberg, R.W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P.C.D., Nikonov, S., Paynter, D.J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B.G., Robinson, T., Schwarzkopf, D.M., Sentman, L.T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A.T., Wyman, B., Zeng, Y., Zhao, M. 2020 The GFDL Earth System Model version 4.1 (GFDL?ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Sy. 12(11): e2019MS002015.
DOI: 10.1029/2019MS002015View Article
Google Scholar
El?Gabbas, A., Dormann, C.F. 2018 Wrong, but useful: regional species distribution models may not be improved by range?wide data under biased sampling. Ecol. Evol. 8(4): 2196?2206.
DOI: 10.1002/ece3.3834View Article
Google Scholar
Elith, J., Leathwick, J.R., Hastie, T. 2008 A working guide to boosted regression trees. J. Anim. Ecol. 77(4): 802?813.
DOI: 10.1111/j.1365-2656.2008.01390.xView Article
Google Scholar
Elith, J., Phillips, S.J., Hastie, T., Dud?k, M., Chee, Y.E., Yates, C.J. 2011 A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1): 43?57.
DOI: 10.1111/j.1472-4642.2010.00725.xView Article
Google Scholar
Fick, S.E., Hijmans, R.J. 2017 WorldClim 2: new 1?km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12): 4302?4315.
DOI: 10.1002/joc.5086View Article
Google Scholar
Fois, M., Fenu, G., Lombrana, A.C., Cogoni, D., Bacchetta, G. 2015 A practical method to speed up the discovery of unknown populations using Species Distribution Models. J. Nat. Conserv. 24: 42?48.
DOI: 10.1016/j.jnc.2015.02.001View Article
Google Scholar
Friedman, J.H. 1991 Multivariate adaptive regression splines. Ann. Stat. 19(1): 1?67.
DOI: 10.1214/aos/1176347973View Article
Google Scholar
Friedman, J.H. 2001 Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5): 1189?1232.
DOI: 10.1214/aos/1013203451View Article
Google Scholar
Godsoe, W. 2014 Inferring the similarity of species distributions using Species’ Distribution Models. Ecography 37(2): 130?136.
DOI: 10.1111/j.1600-0587.2013.00403.xView Article
Google Scholar
Guillera?Arroita, G., Lahoz?Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R., Wintle, B.A. 2015 Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecol. Biogeogr. 24(3): 276?292.
DOI: 10.1111/geb.12268View Article
Google Scholar
Guisan, A., Edwards Jr, T.C., Hastie, T. 2002 Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157(2-3): 89?100.
DOI: 10.1016/S0304-3800(02)00204-1View Article
Google Scholar
Guisan, A., Zimmermann, N.E., Elith, J., Graham, C.H., Phillips, S., Peterson, A.T. 2007 What matters for predicting the occurrences of trees: techniques, data, or species characteristics? Ecol. Monogr. 77(4): 615?630.
DOI: 10.1890/06-1060.1View Article
Google Scholar
Hama, A.A., Khwarahm, N.R. 2023 Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: Range overlap and implications for conservation. Ecol. Inform. 73: 101930.
DOI: 10.1016/j.ecoinf.2022.101930View Article
Google Scholar
HamadAmin, B.A., Khwarahm, N.R. 2023 Mapping impacts of climate change on the distributions of two endemic tree species under Socioeconomic Pathway Scenarios (SSP). Sustainability 15(6): 5469.
DOI: 10.3390/su15065469View Article
Google Scholar
Hastie, T., Tibshirani, R. 1990 Exploring the nature of covariate effects in the proportional hazards model. Biometrics 46(4):1005?1016.
DOI: 10.2307/2532444View Article
Google Scholar
Hastie, T., Tibshirani, R., Buja, A. 1994 Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 89(428): 1255?1270.
DOI: 10.1080/01621459.1994.10476866View Article
Google Scholar
Hirzel, A.H., Helfer, V., Metral, F. 2001 Assessing habitat-suitability models with a virtual species. Ecol. Model. 145(2-3): 111?121.
DOI: 10.1016/S0304-3800(01)00396-9View Article
Google Scholar
Hsieh, C.F., Chao, W.C., Liao, C.C., Yang, K.C., Hsieh, T.H. 1997 Floristic composition of the evergreen broad-leaved forests of Taiwan. Nat. Hist. Res. 4: 1?16.
Huang, M., Kong, X., Varela, S., Duan, R. 2016 The Niche Limitation Method (NicheLim), a new algorithm for generating virtual species to study biogeography. Ecol. Model. 320: 197?202.
DOI: 10.1016/j.ecolmodel.2015.10.003View Article
Google Scholar
Hutchinson, G.E. 1957 Concluding remarks. - Cold Spring. Harb. Symp. 22: 415?427.
DOI: 10.1101/SQB.1957.022.01.039View Article
Google Scholar
Inman, R., Franklin, J., Esque, T., Nussear, K. 2021 Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere 12(3): e03422.
IPCC 2013 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC 2022 Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Shukla, P.R., Skea, J., Slade, R., Khourdajie, A.A., Diemen, R. v., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., Malley, J. (eds.) Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
IUCN 2014 Red List of Ecosystems Workshop Report. Cambridge, United Kingdom, 22–23 January 2014. Commission on Ecosystem Management and Species Survival Commission, International Union for Conservation of Nature, Gland.
Jakeman, A.J., Elsawah, S., Wang, H.-H., Hamilton, S.H., Melsen, L., Grimm, V. 2024 Towards normalizing good practice across the whole modeling cycle: its instrumentation and future research topics. SESMO. 6: 18755?18755.
DOI: 10.18174/sesmo.18755View Article
Google Scholar
Jiang, R., Zou, M., Qin, Y., Tan, G., Huang, S., Quan, H., Zhou, J., Liao, H. 2022 Modeling of the potential geographical distribution of three Fritillaria species under climate change. Front. Plant Sci. 12: 749838.
DOI: 10.3389/fpls.2021.749838View Article
Google Scholar
Journ?, V., Barnagaud, J.Y., Bernard, C., Crochet, P.A., Morin, X. 2020 Correlative climatic niche models predict real and virtual species distributions equally well. Ecology. 101(1): e02912.
DOI: 10.1002/ecy.2912View Article
Google Scholar
Kadmon, R., Farber, O., Danin, A. 2003 A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13(3): 853?867.
DOI: 10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2View Article
Google Scholar
Karger, D. N., Conrad, O., B?hner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M. 2017 Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 4(1): 170122.
DOI: 10.1038/sdata.2017.122View Article
Google Scholar
Kataoka, T., Tatebe, H., Koyama, H., Mochizuki, T., Ogochi, K., Naoe, H., Imada, Y., Shiogama, H., Kimoto, M., Watanabe, M. 2020 Seasonal to decadal predictions with MIROC6: Description and basic evaluation. J. Adv. Model. Earth Sy. 12(12): e2019MS002035.
DOI: 10.1029/2019MS002035View Article
Google Scholar
Kebede, A.S., Nicholls, R.J., Allan, A., Arto, I., Cazcarro, I., Fernandes, J.A., Hill, C.T., Hutton, C.W., Kay, S., L?z?r, A.N. 2018 Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Sci. Total Environ. 635: 659?672.
DOI: 10.1016/j.scitotenv.2018.03.368View Article
Google Scholar
Khan, S., Verma, S. 2022 Ensemble modeling to predict the impact of future climate change on the global distribution of Olea europaea subsp. cuspidata. Front. For. Glob. Change. 5: 977691.
DOI: 10.3389/ffgc.2022.977691View Article
Google Scholar
Lannuzel, G., Balmot, J., Dubos, N., Thibault, M., Fogliani, B. 2021 High-resolution topographic variables accurately predict the distribution of rare plant species for conservation area selection in a narrow-endemism hotspot in New Caledonia. Biodivers. Conserv. 30(4): 963?990.
DOI: 10.1007/s10531-021-02126-6View Article
Google Scholar
Laskey, H., Crook, E.D., Kimball, S. 2020 Analysis of rare plant occurrence data for monitoring prioritization. Diversity 12(11): 427.
DOI: 10.3390/d12110427View Article
Google Scholar
Leathwick, J. R., Elith, J., Hastie, T. 2006 Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 199(2): 188?196.
DOI: 10.1016/j.ecolmodel.2006.05.022View Article
Google Scholar
Lek, S., Gu?gan, J.-F. 1999 Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120(2-3): 65?73.
DOI: 10.1016/S0304-3800(99)00092-7View Article
Google Scholar
Leroy, B., Meynard, C.N., Bellard, C., Courchamp, F. 2016 virtualspecies, an R package to generate virtual species distributions. Ecography 39(6): 599?607.
DOI: 10.1111/ecog.01388View Article
Google Scholar
Li, C.F., Chytr?, M., Zelen?, D., Chen, M.Y., Chen, T.Y., Chiou, C.R., Hsia, Y.J., Liu, H.Y., Yang, S.Z., Yeh, C.L. 2013 Classification of Taiwan forest vegetation. Appl. Veg. Sci. 16(4): 698?719.
DOI: 10.1111/avsc.12025View Article
Google Scholar
Liao, C.C., Chang, C.R., Hsu, M.T., Poo, W.K. 2014 Experimental evaluation of the sustainability of dwarf bamboo (Pseudosasa usawai) sprout-harvesting practices in Yangminshan National Park, Taiwan. Environ. Manage. 54: 320?330.
DOI: 10.1007/s00267-014-0296-9View Article
Google Scholar
Liao, C.C., Chen, Y.H. 2021 Improving performance of species distribution model in mountainous areas with complex topography. Ecol. Res. 36(4): 648?662.
DOI: 10.1111/1440-1703.12227View Article
Google Scholar
Liao, C.C., Chen, Y.H. 2022 The effects of true and pseudo-absence data on the performance of species distribution models at landscape scale. Taiwania 67(1): 9?20.
DOI: 10.6165/tai.2022.67.9View Article
Google Scholar
Liao, C.C., Kuo, S.C., Chang, C.R. 2012 Forest distribution on small isolated hills and implications on woody plant distribution under threats of global warming. Taiwania 57(3): 242?250.
DOI: 10.6165/tai.2012.57(3).242View Article
Google Scholar
Liao, C.C., Lin, H.Y., Fan, S.W. 2023 A statistical method to generate high-resolution climate datasets for modeling plant distribution range and range shifts under climate change in mountainous areas. Taiwania 68(1): 8?22.
DOI: 10.6165/tai.2023.68.8View Article
Google Scholar
Lobo, J.M., Jim?nez?Valverde, A., Real, R. 2008 AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17(2): 145?151.
DOI: 10.1111/j.1466-8238.2007.00358.xView Article
Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W. 2009 Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15(1): 59?69.
DOI: 10.1111/j.1472-4642.2008.00491.xView Article
Google Scholar
McCullagh, P. 2019 Generalized Linear Models. Routledge.
Meucci, A., Young, I.R., Hemer, M., Trenham, C., Watterson, I. G. 2023 140 years of global ocean wind-wave climate derived from CMIP6 ACCESS-CM2 and EC-Earth3 GCMs: Global trends, regional changes, and future projections. J. Clim. 36(6): 1605?1631.
DOI: 10.1175/JCLI-D-21-0929.1View Article
Google Scholar
Meynard, C.N., Kaplan, D.M. 2013 Using virtual species to study species distributions and model performance. J. Biogeogr. 40(1): 1?8.
DOI: 10.1111/jbi.12006View Article
Google Scholar
Meynard, C.N., Leroy, B., Kaplan, D.M. 2019 Testing methods in species distribution modelling using virtual species: what have we learnt and what are we missing? Ecography 42(12): 2021?2036.
DOI: 10.1111/ecog.04385View Article
Google Scholar
Ning, H., Ling, L., Sun, X., Kang, X., Chen, H. 2021 Predicting the future redistribution of Chinese white pine Pinus armandii Franch. under climate change scenarios in China using species distribution models. Glob. Ecol. Conserv. 25: e01420.
DOI: 10.1016/j.gecco.2020.e01420View Article
Google Scholar
Nix, H.A. 1986 A biogeographic analysis of Australian elapid snakes. Atlas of elapid snakes of Australia. 7: 4?15.
Olden, J.D., Jackson, D. A. 2002 Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154(1-2): 135?150.
DOI: 10.1016/S0304-3800(02)00064-9View Article
Google Scholar
Pedersen, J.S.T., Santos, F.D., van Vuuren, D., Gupta, J., Coelho, R.E., Apar?cio, B.A., Swart, R. 2021 An assessment of the performance of scenarios against historical global emissions for IPCC reports. Global Environ. Change. 66: 102199.
DOI: 10.1016/j.gloenvcha.2020.102199View Article
Google Scholar
Peterson, A.T., Sober?n, J., Pearson, R.G., Anderson, R.P., Mart?nez-Meyer, E., Nakamura, M., Ara?jo, M.B. 2011 Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press.
Phillips, S.J., Anderson, R. P., Schapire, R. E. 2006 Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4): 231?259.
DOI: 10.1016/j.ecolmodel.2005.03.026View Article
Google Scholar
Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A., Randin, C. 2014 Very high resolution environmental predictors in species distribution models: Moving beyond topography? Prog. Phys. Geogr. 38(1): 79?96.
DOI: 10.1177/0309133313512667View Article
Google Scholar
Pu, Y., Liu, H., Yan, R., Yang, H., Xia, K., Li, Y., Dong, L., Li, L., Wang, H., Nie, Y. 2020 CAS FGOALS-g3 model datasets for the CMIP6 scenario model intercomparison project (ScenarioMIP). Adv. Atmos. Sci. 37(10): 1081?1092.
DOI: 10.1007/s00376-020-2032-0View Article
Google Scholar
Qazi, A.W., Saqib, Z., Zaman-ul-Haq, M. 2022 Trends in species distribution modelling in context of rare and endemic plants: a systematic review. Ecol. Process. 11(1): 1?11.
DOI: 10.1186/s13717-022-00384-yView Article
Google Scholar
Qiao, H., Feng, X., Escobar, L.E., Peterson, A.T., Sober?n, J., Zhu, G., Pape?, M. 2019 An evaluation of transferability of ecological niche models. Ecography 42(3): 521?534.
DOI: 10.1111/ecog.03986View Article
Google Scholar
Qiao, H., Peterson, A.T., Campbell, L.P., Sober?n, J., Ji, L., Escobar, L.E. 2016 NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39(8): 805?813.
DOI: 10.1111/ecog.01961View Article
Google Scholar
Santini, L., Ben?tez?L?pez, A., Maiorano, L., ?engi?, M. and Huijbregts, M.A. 2021 Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27(6): 1035?1050.
DOI: 10.1111/ddi.13252View Article
Google Scholar
Sillero, N., Barbosa, A.M. 2021 Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35(2): 213?226.
DOI: 10.1080/13658816.2020.1798968View Article
Google Scholar
Su, H.J. 1984 Studies on the climate and vegetation types of the natural forests in Taiwan (II) Altitudinal vegetation zones in relation to temperature gradient. Q. J. Chin. Forestry 17: 57?73.
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M.D., Thuiller, C.W. 2016 Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework.
Valavi, R., Guillera?Arroita, G., Lahoz?Monfort, J.J., Elith, J. 2022 Predictive performance of presence?only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92(1): e01486.
DOI: 10.1002/ecm.1486View Article
Google Scholar
Wan, J.-N., Mbari, N. J., Wang, S.-W., Liu, B., Mwangi, B. N., Rasoarahona, J.R., Xin, H.-P., Zhou, Y.-D., Wang, Q.-F. 2021. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 43(2): 117?124.
DOI: 10.1016/j.pld.2020.07.001View Article
Google Scholar
Wang, T., Wang, G., Innes, J., Nitschke, C., Kang, H. 2016 Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia–Pacific region. For. Ecol. Manage. 360: 357?366.
DOI: 10.1016/j.foreco.2015.08.004View Article
Google Scholar
Wang, Y.C., Hsu, H.H., Chen, C.A., Tseng, W.L., Hsu, P.C., Lin, C.W., Chen, Y.L., Jiang, L.C., Lee, Y.C., Liang, H. C. 2021 Performance of the Taiwan earth system model in simulating climate variability compared with observations and CMIP6 model simulations. J. Adv. Model. Earth Sy. 13(7): e2020MS002353.
DOI: 10.1029/2020MS002353View Article
Google Scholar
Wood, S.N. 2017 Generalized Additive Models: An introduction with R. chapman and hall/CRC.
Xu, Y., Huang, Y., Zhao, H., Yang, M., Zhuang, Y., Ye, X. 2021 Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests. 12(4): 429.
DOI: 10.3390/f12040429View Article
Google Scholar
Yin, Y., He, Q., Pan, X., Liu, Q., Wu, Y. and Li, X. 2022. Predicting current potential distribution and the range dynamics of Pomacea canaliculata in China under global climate change. Biology 11(1): 110.
DOI: 10.3390/biology11010110View Article
Google Scholar
Zhu, Y., Wei, W., Li, H., Wang, B., Yang, X., Liu, Y. 2018 Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Glob. Ecol. Conserv. 16: e00501.
DOI: 10.1016/j.gecco.2018.e00501View Article
Google Scholar
Zimmer, S.N., Holsinger, K.W., Dawson, C.A. 2023 A field?validated ensemble species distribution model of Eriogonum pelinophilum, an endangered subshrub in Colorado, USA. Ecol. Evol. 13(12): e10816.
DOI: 10.1002/ece3.10816View Article
Google Scholar
Zurell, D., Fritz, S. A., R?nnfeldt, A., Steinbauer, M.J. 2023 Predicting extinctions with species distribution models. Cambridge Prisms: Extinction. 1: e8.
DOI: 10.1017/ext.2023.5View Article
Google Scholar

